
Augusto: Exploiting Popular Functionalities for the Generation
of Semantic GUI Tests with Oracles

Leonardo Mariani
University of Milano-Bicocca

mariani@disco.it

Mauro Pezzè
University of Milano-Bicocca

USI Università della Svizzera italiana
mauro.pezze@usi.ch

Daniele Zuddas
USI Università della Svizzera italiana

daniele.zuddas@usi.ch

ABSTRACT
Testing software applications by interacting with their graphical
user interface (GUI) is an expensive and complex process. Current
automatic test case generation techniques implement explorative
approaches that, although producing useful test cases, have a lim-
ited capability of covering semantically relevant interactions, thus
frequently missing important testing scenarios. These techniques
typically interact with the available widgets following the structure
of the GUI, without any guess about the functions that are executed.

In this paper we propose Augusto, a test case generation tech-
nique that exploits a built-in knowledge of the semantics associated
with popular and well-known functionalities, such as CRUD opera-
tions, to automatically generate effective test cases with automated
functional oracles. Empirical results indicate that Augusto can re-
veal faults that cannot be revealed with state of the art techniques.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging;

KEYWORDS
GUI testing, automatic test case generation, semantics, oracles

ACM Reference Format:
Leonardo Mariani, Mauro Pezzè, and Daniele Zuddas. 2018. Augusto: Ex-
ploiting Popular Functionalities for the Generation of Semantic GUI Tests
with Oracles. In ICSE ’18: ICSE ’18: 40th International Conference on Software
Engineering , May 27-June 3, 2018, Gothenburg, Sweden. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3180155.3180162

1 INTRODUCTION
Testing software applications at the system level requires executing
the applications through their interfaces to verify the correctness
of the functionalities and stimulating all the layers and components
involved in the execution. Since the number and complexity of
the entities typically involved in a system-level execution could be
significant, defining test cases that thoroughly sample and verify
the behavior of an application is a difficult and expensive process.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180162

Automating just part of this process can dramatically improve the
effectiveness of software verification activities and significantly
reduce development costs, partially alleviating software developers
from their verification effort.

In this paper we address the problem of automatically generat-
ing system test cases for interactive applications, that is, applica-
tions that interact with the users through Graphical User Interfaces
(GUIs). Interactive applications (from now on simply applications)
are commonly available in several contexts, including desktop and
mobile environments, and are exploited in many domains, ranging
from leisure and travel to banking and insurance.

Techniques for automatically testing interactive applications
exploit structural information extracted from either the GUI or
the code to generate system test cases. The techniques that ana-
lyze the structure of the GUI generate test cases that cover GUI
elements based on combinatorial interaction testing and various
heuristics [28, 32, 35, 43]. Those that analyze the source code in-
stead exploit search-based and symbolic execution to generate test
cases that exercise code items [18, 19, 27].

State-of-the-art techniques suffer from two relevant limitations:
the ineffective exploration of the execution space and the lack of
oracles. To illustrate these limitations let us consider a fault in the
sign up functionality of OnShop, a demo e-commerce application
available on git-hub [24]. Listing 1 shows an excerpt of the code
that handles the user registration in OnShop.

300 private void signup() {

301 if (isValidForm()) {

302 insertIntoDB();

303 JOptionPane.showMessageDialog(SignupPanel, "Please␣Login␣to␣get␣Started!",

"Congratulations", JOptionPane.DEFAULT_OPTION);

...

308 card.show(this.getParent(), "startCard");//Return to Initial Window

309 }else

310 resetForm();

311 }

315 private void insertIntoDB() {

...

334 if (resultSet.next()) { //User Already Exists

335 JOptionPane.showMessageDialog(SignupPanel,"Username␣already␣exists");

336 resetForm();

337 }

Listing 1: Faulty User Registration in OnShop

When a new user registers, the signup function is executed
(line 300). If the signup form has been correctly filled in, function
isValidForm returns true (line 301), and function insertIntoDB
is invoked (line 302). If the username chosen by the user has been
already taken by another user, this function correctly shows an
error message to the user (line 335). The execution then returns
to function signup and a message that informs the user that the
registration has been completed correctly is also shown to the user
(line 303). Finally, the application is redirected to the initial window

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Leonardo Mariani, Mauro Pezzè, and Daniele Zuddas

expecting the user to login (line 308). This fault is quite confusing for
a user because the application shows both the behavior of a correct
and incorrect registration in response to a single user request.

This fault cannot be automatically detected with state-of-the-art
techniques. To reveal this fault, a testing technique has to produce
a test case that performs a correct sign up twice while filling the
username field always with the same value. In OnShop, this test
scenario requires a sequence of at least 20 specific GUI actions to
be covered. Considering the number of GUI actions that can be
executed at every step of the execution, it is very unlikely that this
scenario is covered with explorative approaches. Indeed, in our
experiments none of the competing techniques have been able to
cover this scenario (ineffective exploration of the execution space).

Moreover, even if this scenario is covered by chance, none of the
available techniques would interpret the response of the system as
a failure. The application produces an erroneous result, in terms of
a wrong output message and an incorrect transition to the initial
window, while state of the art solutions look for uncaught excep-
tions and system crashes [6], which is not the case for the OnShop
sign up fault. Thus, even when the scenario is covered, no failure
would be reported to the user (lack of oracles).

To address both the ineffective exploration of the execution space
and the lack of oracles, this paper proposesAugusto (AUtomatic GUi
Semantic Testing and Oracles), an approach that exploits common
sense knowledge to automatically generate semantically-relevant
test cases equipped with functional oracles that can reveal faults
such as the one discussed above. In particular, Augusto is able to
(i) cost-effectively produce test cases with useful combinations of
actions only, in contrast with techniques that generate test cases
with many unrelated and irrelevant actions, and (ii) detect failures
that depend on the semantics of the application, in contrast with
techniques revealing crash-like failures only.

Augusto relies on the intuition that there exists many popular
functionalities that are implemented in similar ways and respond
to a same semantics when they occur in interactive applications.
Due to their popularity, the semantics of these functionalities is not
typically provided explicitly since users and developers have already
clear expectations. We indicate this shared expectation as common
sense knowledge, and these functionalities as application independent
functionalities (AIF). Examples of AIFs are authentication operations,
CRUD (Create, Read, Update, Delete) operations, and search and
booking operations. These functionalities are pervasively present in
software applications, and, despite minor differences, their behavior
remains always the same [8, 40, 42].

On a testing perspective, AIFs represent a unique opportunity:
their semantics can be specified once for all according to common
sense knowledge, to be then automatically adapted and reused to
test the specific AIFs present in the applications under test. In this
way a relevant subset of the features present in an application (e.g.,
consider the number of CRUD operations that are typically present
in an application) can be tested automatically, alleviating the tester
from part of the verification effort. For instance, the authentica-
tion bug present in the onShop application can be revealed using
Augusto with virtually no effort for the tester.

Augusto exploits the characteristics of AIFs to define an auto-
matic testing process by introducing (i) an encoding of the seman-
tics of AIFs with Alloy [22], which provides a flexible and powerful

way to specify how a functionality affects the state of an application,
(ii) a technique to discover the AIFs by analyzing the GUI of the
application under test, (iii) a strategy to extract the specific seman-
tics of AIFs and to automatically reflect the discovered information
into the Alloy model, and (iv) a solution to generate effective test
suites equipped with a functional oracle. Note that Augusto is not
alternative but complementary to other automatic techniques: Au-
gusto can efficiently and effectively test AIFs, while the rest of the
functionalities can still be addressed with existing approaches.

In our evaluation, Augusto automatically recognized and ef-
fectively tested several AIFs across 7 interactive applications and
revealed 7 real faults1. We compared Augusto to Guitar [37] and
ABT [28], two representative state-of-the-art techniques, and dis-
overed that only 2 of these faults could be revealed by the competing
approaches, while the ineffective exploration of the execution space
and the lack of a oracle prevented the identification of the other 5
faults. This result corroborates our hypothesis that Augusto can be
significantly more effective than state-of-the-art approaches with
AIFs, and that an automatic system testing process should exploit
both Augusto, to test AIFs, and other approaches to test non-AIFs.

The paper is organized as follows. Section 2 discusses the char-
acteristics of AIFs. Section 3 presents Augusto. Section 4 describes
the empirical results. Section 5 discusses related work. Section 6
provides final remarks.

2 APPLICATION INDEPENDENT
FUNCTIONALITIES

In this work we use the term functionality to refer to a semantically
cohese and correlated set of user operations available on the GUI of
an application, for instance, a set of CRUD operations all referring
to the same entity type (e.g., money transactions). Thus a single
AIF may correspond to several user operations.

Many functionalities have a consistently similar behavior that
cannot be distinguished across applications, once abstracting away
from concrete details. For instance, search and save operations may
affect different kinds of entities, but in all cases they search and save
an entity of some type. We refer to them as application independent
functionalities (AIF). AIFs satisfy the following properties:
• they are commonly present in several applications, some might
be more common in certain domains, for instance the cart func-
tionality is very common in the e-commerce domain, whereas
others are generally common, such as CRUD functionalities;

• their semantics is largely application independent thus it can be
defined abstractly in a way that is independent on the specific
application. For example, the general semantics of CRUD func-
tionalities does not depend on the type of the handled object;

• they can be activated from the GUI according to structural GUI
patterns that users can recognize [40, 42]. For instance, the sign
in and sign up functionalities in many applications use similar
sets of widgets, although these widgets have different look and
feel and placements in the windows.

Because of their popularity, the semantics of AIFs is part of users’
common sense knowledge, thus they can be intuitively used without
requiring special documentation and manuals.

1Tool and experimental material are available at http://github.com/danydunk/Augusto.

Augusto ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Match
Finalizing

TestingRipping Structural
Matching

GUI Model Raw Match
Interactive
Application

Test Reports
AIF Recognition

Full
Match

Reification

Concrete
Match

AIF Archive

GUI Pattern Abs. Semantics

AIF 1

…

AIF 2

AIF 3

<READ>

<READ>

Figure 1: Augusto logical architecture

The authentication AIF, composed of the sign in, sing up, and
sign out operations, is a good example of AIF since: (i) it provides
an overall functionality, authentication, which can be found in
many applications, (ii) its semantics is well-known and mostly
independent on the specific application, and (iii) its presentation
on the GUI is predictable and easily recognisable.

Apart from authentication, there are several other examples of
AIFs: the functionality of creating, reading, updating and deleting
(CRUD) objects of a type, the functionality of saving the work on a
file and then reloading it, the functionality of searching and then
booking a certain service (car, hotel, flight), the functionality of
handling an e-commerce cart, etc. Despite their diffusion, AIFs
can easily include faults, even in extremely popular applications,
and thus require careful testing. For instance, faults impacting an
extensive number of users have been reported for CRUD operations
in Jenkins [23] and for authentication operations in Dropbox [16].

The general idea that functionalities recur in a similar way in the
GUI of different applications has been already investigates in the
field of UI design. There exists catalogs of UI design patterns [40, 42]
and designing tools [8] that allow to create a newGUI by composing
these patterns. Even if the concept of UI design pattern is not exactly
the same of AIF, many UI design patterns turn out to be also AIFs.

Augusto exploits the presence of AIFs to automatically generate
semantically relevant test cases equipped with functional oracles.

3 AUGUSTO: AUTOMATED AIFS TESTING
Augusto is an automatic test case generator for application indepen-
dent functionalities (AIFs): it exploits the application-independent
semantics of AIFs to automatically identify and test the AIFs present
in interactive applications. The intuition is that, ideally, an AIF can
be modelled once for all and then be exploited to effectively test
any occurrence of the modeled AIF in any application. Augusto
supports this intuition by offering the capabilities to discover AIFs,
to automatically adapt the models to the application under test
(AUT), and to generate effective test cases equipped with oracles.

To study the effectiveness of the approach, we provide an initial
definition for several AIFs. Of course, the set of the defined AIFs
can be further extended to increase the scope and applicability of
the approach. Note that testers do not have to do any modeling
effort because they can benefit from the AIF definitions already
present in the tool.

In the rest of this section, we first provide an overview of Augusto
and then discuss the individual elements and steps of the approach.

3.1 Overview
Figure 1 shows the logical architecture of Augusto. The AIF Archive
is the repository that contains the set of AIFs supported by Augusto.
Each AIF is modelled as a pair <GUI Pattern, Abstract Semantics>,
where the GUI Pattern specifies the set of windows and widgets
that may refer to the AIF (Section 3.2), and the Abstract Semantics
specifies the behavior of the AIF (Section 3.3).

Augusto works in five steps. The Ripping step executes the ap-
plication under test to dynamically extract the GUI model, which
is a partial model of the structure of the GUI (Section 3.4). The
Structural Matching step exploits the GUI Model to identify the
AIFs, by searching for instances of the GUI Patterns in the GUI
Model (Section 3.5). This step produces a set of raw matches, which
can be partial, that is, only a subset of a GUI Pattern might match
the GUI Model. Augusto supports partial matches because the GUI
Model extracted through ripping might be incomplete. The Match
Finalizing step generates additional executions aiming to complete
the partial matches while verifying the consistency between the
behaviors specified in the Abstract Semantics model and the behav-
ior of the application (Section 3.6). This step produces a set of full
matches, which includes every AIFs that have been fully matched in
terms of its GUI pattern and its abstract semantics. The Reification
step further refines the full matches extracting properties about
the concrete behavior of the application (Section 3.7). For instance,
every CRUD operation may include a different number of unique
and mandatory fields for the creation of an entity. Augusto extracts
these properties by stimulating the application with different com-
binations of inputs. This step produces a set of concrete matches,
each being an AIF that occurs in the application under test. The
concrete matches are associated with semantics information that
takes into consideration the specific characteristics of the applica-
tion under test. Finally, the Testing step generates and executes test
cases that both combine multiple operations in a semantically rele-
vant way and include a functional oracle to check the correctness
of the results produced by the application (Section 3.8).

3.2 GUI Pattern Model
The GUI pattern model specifies how a certain AIF generally occurs
on the GUI of interactive applications, and it is used by Augusto
to automatically recognize whether the AUT implements the AIF.
Even though there exists powerful UI modelling languages such
as IFML [12], these languages are meant to model the concrete UI
of a specific application, and they are not meant to model abstract
portions of UIs that must be general and flexible and that can fit

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Leonardo Mariani, Mauro Pezzè, and Daniele Zuddas

multiple applications. For this reasonwe defined an ad hoc language
for the GUI pattern model.

The language we defined for the GUI Pattern models specifies
how AIFs occur in GUIs as sets of abstract windows that contain
abstract widgets and are connected through abstract edges.

An abstract window identifies windows of the application. It is
defined as a set of abstract widgets that are required to be present
in the window. An abstract widget abstractly refers to a widget in
the GUI, and might be of type (i) action, which represents widgets
that can be clicked, for instance buttons, (ii) input, which represents
widgets that can be used to enter data, for instance text fields, and
(iii) selectable, which represents widgets that can be selected, for
instance lists or tables. Abstract widgets are annotated with both
regular expressions, which specify the labels that must be associated
with the widgets, and cardinality, which expresses the quantity of
that particular widget that can be in a window and can be either
one (exactly 1), some (1 or more), none (no occurrences), lone (1 or
0) or any (0 or more).

<window id="loginform" card=one>
<action_widget id="signup" card=lone>

<label>^(register|signup|sign up).*$</label>
</action_widget>
<action_widget id="login" card=one>

<label>^(login|enter|sign in).*$</label>
</action_widget>
<input_widget id="pass" card=one>

<label>^(pass|password).*</label>
</input_widget>
<input_widget id="user" card=one>

<label>^(user|username|email).*</label>
</input_widget>

</window>
<window id="signupform" card=one>

<action_widget id="register" card=one>
<label>^(ok|save|record|signup|sign up)</label>

</action_widget>
<input_widget id="signupuser" card=one>

<label>^(user|username|email).*</label>
</input_widget>
<input_widget id="signuppass" card=one>

<label>^(?!re-enter|repeat)(pass|password).*</label>
</input_widget>
<input_widget id="signuppass2" card=lone>

<label>^(repeat|re-enter|confirm).*</label>
</input_widget>
<input_widget id="otherfields" card=any>

<label>.*</label>
</input_widget>

</window>
<window id="loggedpage" card=some>

<action_widget id="logout" card=one>
<label>^(logout|exit|sign out|signout).*$</label>

</action_widget>
</window>
<edge type=uncond from=signup to=signupform/>
<edge type=uncond from=logout to=loginform/>
<edge type=cond from=register to=loginform;loggedpage/>
<edge type=cond from=login to=loggedpage/>

Figure 2: AUTH GUI Pattern model

Figure 2 shows a simplified GUI pattern for the authentica-
tion AIF (for the complete model see http://github.com/danydunk/
Augusto). The pattern is defined in xml format. The window xml ele-
ments define the abstract windows that correspond to the windows
of the application. For instance, the login abstract window corre-
sponds to the presence of a window that includes an input field for
the username, an input field for the password, an action widget to
login, and an optional action widget for registering. The definitions
are flexible. They are not bound to specific GUI widgets, for in-
stance buttons, but refer to general classes of widgets, for instance

1 /* GUI elements definition */

2 sig loginform, signupform, loggedpage extends Window{}

3 sig login, signup, register, logout extends Action_widget{}

4 sig user, pass, pass2,. . ., otherfields extends Input_widget{}

5 one sig Curr_win { /* Current window */

6 is_in : Window one -> Time,

7 }

8 /* Functionality internal state elements */

9 sig Usr {

10 username : one Value,

11 password : one Value

12 }

13 sig Users{

14 list : Usr set -> Time

15 }

16 /* Semantic Property */

17 one sig Required{

18 fields : set otherfields

19 }

20 pred preconditions [w : Widget, t : Time] {

21 w in register =⇒ not user.content.t=none ∧ not pass.content.t=none ∧

22 (∀ us : Users.list.t | user.content.t,us.username) ∧

23 pass.content.t=pass2 ∧ (∀ iw : Required.fields | not iw.content.t=none)

24 }

25 pred postconditions [w : Widget, t,t' : Time] {

26 w in register =⇒ one us : Users | us.username=user.content.t ∧

27 us.password=pass.content.t ∧ Users.list.t'=Users.list.t+us ∧

28 (Curr_win.is_in.t'=loginform ∨ Curr_win.is_in.t'=loggedpage)

29 }

Figure 3: AUTH Abstract Semantics model

action widgets, and allow elements to be optional, for instance the
register action widget in the login window. The flexibility in the
definition of the cardinality is also useful for abstraction, for ex-
ample the cardinality of the otherfields field in the signupform
abstract window allows the pattern to match an arbitrary number
of fields. The pattern definition allows for additional elements, that
is, a window matching an abstract window may include elements
not specified in the pattern.

Abstract edges connect an action widget of an abstract window
to another abstract window to indicate possible execution flows.
Unconditional abstract edges indicate that the target window is
always reached when interacting with the source action widget,
for example clicking on a navigation menu. Conditional abstract
edges indicate that the target window is reached only if certain
preconditions are satisfied, for instance successfully submitting
a form. The definition in Figure 2 uses two conditional and two
unconditional edges. Uncertainty is represented as a list of possible
target windows. For example the edge associated with the register
action widget indicates that once registered the execution may
reach either the welcome page (automatic login) or the login form.

Abstract windows are logical windows, thus a same concrete
window of an application may host multiple logical windows, for in-
stance the login and registration abstract windows might be found
in a same concrete window. Windows may have a cardinality to
indicate that they are not required to be present in the target appli-
cation. This might be useful for example in cases like confirmation
windows which might or might not be shown in an application.

3.3 Abstract Semantics Model
The Abstract Semantics model describes the behavior of an AIF, and
formally specifies the effect on the application of the interactions
with the widgets defined in the corresponding GUI Pattern in terms
of: (i) the condition necessary to successfully execute an operation

Augusto ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

(precondition); (ii) the window that is shown after the execution
of an action (transition); (iii) the state of the application after the
execution of the action (postcondition). Augusto uses the abstract
semantics model to generate test cases and oracles.

We specify the Abstract Semantics model using the Alloy spec-
ification language [22], chosen because of both its simplicity and
expressiveness, and the efficiency of the Alloy Analyzer, an auto-
matic tool able to analyze anAlloymodel and simulate the execution
of the operations defined in the model.

Figure 3 shows an excerpt of the Abstract Semantics model of
the authentication AIF whose pattern model is shown in Figure 2
(for the complete model see http://github.com/danydunk/Augusto).
The model declares the windows and the widgets relevant to the
specified functionality (lines 2–4). The widgets defined in the GUI
pattern are annotated with a tag (not shown in the example) whose
value is the identifier of the corresponding widget in the Alloy
model. In this way, after mapping a GUI Pattern to the concrete
GUI of the application, every action on a widget can be associated
with its semantics expressed in Alloy. Then the model defines the
state variables that are necessary to define the behavior of the func-
tionality (lines 5–15). In the figure, the model defines the current
window (lines 5–7) and the list of registered users (lines 9–15).

Finally the model defines the preconditions (lines 20–24) and the
postconditions (lines 25–29) of the operations. The figure shows
pre and postconditions only for the registration operation. The
precondition requires the username (user) and the password (pass)
to be not empty, the repeated password (pass2) to be the same than
the password, all the required fields (Required.fields) to be not
empty, and the username to be unique. The postcondition adds a
new user to the set of registered users and changes the current
window to either the loginForm or the loggedPage window. For
simplicity we omitted some of the checks in the precondition, such
as the individual validity checks on the input fields.

The behavior of an AIF can be specified only partially, since
it may depend on some specific semantic properties that change
from application to application. Augusto can enrich the model by
automatically plugging-in semantic properties inferred during the
Reification step. To support semantic properties, the model specifies
in advance one or more items that might be affected by a property
that will be fully defined at a later stage. In a sense, the model
must be ready to incorporate the properties that are dynamically
extracted by running the application under test. In the model in
Figure 3, the item Required, which expresses the concept of some
fields required to be filled in to submit the registration form, is an
example of a property that is indicated in advance simply as a set
of fields (from line 17 to line 19) and that is refined based on the
interaction with the actual application. We discuss the supported
properties and the strategy to infer them in Section 3.7.

3.4 Ripping
The Ripping step produces a graph that represents the structure of
the GUI of the interactive application in input, following the GUI
ripping technique defined by Memon et al. [32]. Augusto creates
the graph by recursively clicking on all the widgets in the GUI
according to a depth first strategy and creating a node for every tra-
versed window and an edge for every observed transition between

windows. Augusto annotates the nodes with detailed information
about all the widgets displayed in the windows.

Ripping may not be able to discover all the edges and windows.
In particular, it might be unable to traverse some conditional edges
because it might fail in satisfying the precondition of the functional-
ity associated with the edge. Augusto addresses this incompleteness
when recognizing AIFs in the next steps of the process.

3.5 Structural Matching
The Structural Matching step searches for raw matches between the
AIFs defined in the AIF archive and the GUI model produced in the
ripping phase. In particular, a raw match is a subgraph of the GUI
Model (i.e., a subset of its windows and edges) that includes all the
elements of a GUI Pattern that can be discovered through ripping.

More rigorously, a windoww in the GUI model (i.e., a node of the
graph) matches an abstract window aw if there exists a matching
widget in w for each abstract widget in aw. A widget matches an
abstract widget if the widget is of the type defined in the abstract
widget (either action, input or selectable) and its label is accepted
by the regular expression defined in the abstract widget. When the
label is not on the widget itself, the label is identified by searching
for a descriptor placed nearby the widget according to the algorithm
defined by Becce et al. [7]. The matching between a window and
an abstract window considers the cardinality of the widgets. The
left part of Figure 4 shows a match between the definition of the
loginform abstract window and the Sign In window of OnShop.

Since the GUI model extracted through ripping does not include
conditional edges, the structural matching considers only the un-
conditional edges defined in the GUI pattern. In practice, Augusto
finds a raw match if it recognizes all the windows reachable by
navigating the unconditional edges of the GUI pattern in the GUI
model. The conditional edges, if present in the pattern, are searched
in the next step.

For example, the portion of GUI relevant to the authentication
pattern discovered through ripping in the onShop application cor-
responds to the two windows shown in Figure 4 inside the grey
frame. These windows are the windows reachable by navigating
unconditional edges only (unconditional edges are shown with a
green thick line in Figure 4). These two windows correspond to two
of the abstract windows that compose the authentication pattern
reported in Figure 2, thus generating a raw match between the GUI
model and the AUTH pattern.

In general, the problem of identifying GUI patterns in the GUI
model is an instance of the subgraph isomorphism problem, which
is proven to be NP-complete [15]. However, since the number of dis-
tinct windows in an application is commonly low, the problem can
be solved in few seconds, as confirmed in our empirical experience.

3.6 Match Finalizing
The Match Finalizing step aims to complete the raw matches, that
is, each raw match is either discarded or extended to a full match
by including the conditional edges.

For each conditional edge to be confirmed, Augusto generates
a probing GUI interaction that samples the edge. A probing GUI
interaction is a test case that terminates with an execution of the
conditional edge in the AUT when its precondition is satisfied. If

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Leonardo Mariani, Mauro Pezzè, and Daniele Zuddas

<window id="loginform" card=one>
<input_widget id="user" card=one>

<label>^(user|username|email).*</label>
</input_widget>
<input_widget id="pass" card=one>

<label>^(pass|password).*</label>
</input_widget>
<action_widget id="login" card=one>

<label>^(login|enter|sign in).*$</label>
</action_widget>
<action_widget id="signup" card=lone>

<label>^(register|signup|sign up).*$</label>
</action_widget>

</window>

Figure 4: A simplified version of the OnShop GUI. The windows in the grey frame are those that are discovered by the
ripping. Dashed red edges are discovered during the match finalizing step.

its execution reaches the expected window and satisfies the post-
condition associated with the edge in the Abstract Semantics model,
Augusto confirms the presence of the conditional edge, and adds the
edge, as well as any newly discovered window, to the GUI model.
If Augusto succeeds in confirming every conditional edge relevant
to the pattern that originated the raw match, it transforms the raw
match into a full match, otherwise it discards the raw match.

In some cases, a conditional edge may have more than one pos-
sible resulting window, such as for the conditional edge associated
with the register widget defined in Figure 2. According to the pat-
tern after a registration has been successfully completed, a program
is expected to reach either the login or the welcome (abstract) win-
dow. In these cases Augusto expects a consistent behavior from the
application, that is, when successfully executing a conditional edge
it expects the application to always reach the same window.

Augusto generates the probing GUI interactions exploiting the
Alloy Analyzer, which can be instructed to generate a sequence of
GUI actions that covers a certain operation or condition of the Alloy
model. The Alloy Analyzer requires in input the abstract semantics
model, a condition that must be covered, and the maximum length
of the interaction sequence that must be produced. In this case, the
Alloy Analyzer is asked to generate sequences, of length up to a
given boundary, that execute the patterns conditional edges.

If the tested AIF is not available in the initial window of the AUT,
Augusto analyzes the GUI model to find the shortest sequence
of actions that reaches the window with the AIF from the initial
window, and adds this sequence as a prefix of the probing GUI
interaction generated with the Alloy Analyzer.

When executing a GUI interaction that requires input values,
such as filling a textfield, Augusto uses an archive of input values
organized according to their type (e.g., emails are distinguished
from dates) and divided between valid and invalid values. The
archive includes predefined values for most common data types,
but it can be extended with values specific for an AUT.

In the case of the sample raw match of the AUTH pattern with
the onShop application, Augusto successfully generates probing
GUI interactions that confirm the two conditional edges present in
the pattern, shown with dashed red arrows in Figure 4. This also
leads to the identification of a new window and finally turned the
raw match into a full match.

3.7 Reification
The Reification step adapts a full match to the specific semantics of
the application, by focusing on the semantic properties defined in the

Abstract Semantics model. The Abstract Semantics model encodes
the semantic properties in a general way, that is, semantic properties
may have unspecified parts that are automatically adapted to the
specific characteristics of the AUT. For instance, the property that
requires some fields to be non-empty is defined in Figure 3 as being
associated with a set of input widgets, but the exact set of widgets is
left unspecified. The Reification step adapts the semantic properties
to the behavior observed for the AUT.

Augusto starts by generating a probing GUI interaction that
covers the behavior affected by a semantic property, and exploits
the result of the execution to guess the semantic property. For
example, a probing GUI interaction may try to execute the Sign Up
operation present in the Sign Up window of Figure 4 with a non-
empty Full Name, being Full Name the only field that needs to be
determined as required or not. In fact fields username, password
and repeated password are known to be required (see Figure 3).
After executing this probing GUI interaction, Augusto, using the
Alloy Analyzer constraint solver, makes a guess consistent with
the collected evidence. For instance it may guess that the field Full
Name is mandatory. Augusto automatically includes the guess in the
Alloy model by adding some fields to the set of fields affected by the
property –in this example it adds Full Name to Required.fields–
and tries to generate a new probing GUI interaction that violates
the newly guessed semantic property. The new interaction can
either confirm or refute the guess. If the interaction refutes the
guess, Augusto makes a new guess based on the newly collected
evidence. This process iterates until either there is only one possible
guess consistent with all the collected observations or a timeout is
reached. In both cases Augusto incorporates the guess in the model.
In the example, the first guess is correct and it is confirmed by an
interaction that fails to sign up with an empty Full Name.

This process is quite general and can discover several classes of
semantic properties. The current version of Augusto supports any
semantic property that can be expressed as a property associated
with a (possibly empty) set of elements of the GUI, for instance the
property that an input field in a form is either required or unique.

3.8 Testing
The testing phase generates test cases that stimulate the discovered
AIFs within semantically relevant usage scenarios. In particular,
Augusto generates a test suite that satisfies the following criteria.

Conditional edge coverage. This criterion requires sampling the
AIFs in every execution context: for each condition associated with
a conditional edge of the model, and for each combination of truth

Augusto ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

values computed according to MC/DC [20], there must exist a test
case that exercises that combination. We selected MC/DC because
it offers a good compromise between cost and completeness.

Pairwise edge coverage. This criterion requires combining the
execution of multiple edges to test combinations of actions. For
each ordered pair of edges in the concrete match, there must exist
a test case that exercises the pair. If an edge is a conditional edge, it
must be executed twice, with a satisfied and a violated precondition.

Augusto generates GUI test cases that satisfy these criteria using
the Alloy Analyzer in the same way as it generates the probing
GUI interactions of the previous steps. Note that the generated test
cases cover the semantics of the operations by construction.

In addition, Augusto generates a functional oracle for each test
case by mapping the postconditions, which define the window that
must be displayed after the execution of a GUI action and its content,
into assertions that are checked after the execution of every action.

Let us consider our running example. In order to cover the condi-
tional edge about the registration operation with MC/DC (see line
22 of Figure 3), Augusto generates a non-trivial test case that first
registers a new user and then registers again a user with the same
username of the already existing user. The test case is also equipped
with a functional oracle that checks that the current window is still
the window with the registration form, after an error message has
been possibly displayed. The execution of the test causes a failure
detected by the oracle because the onShop application, in addition
to showing an error message, behaves like if the registration has
been completed successfully, which violates the generated oracle.

4 EMPIRICAL EVALUATION
Our empirical evaluation addresses 3 research questions:

(RQ1) How effective is Augusto in detecting application independent
functionalities?

This research question investigates the capability of Augusto
to automatically detect the presence of the modelled AIFs in the
tested applications.

(RQ2) How effective is Augusto in testing application independent
functionalities?

This research question investigates Augusto’s ability to automat-
ically generate test cases and find faults in the detected AIFs.

(RQ3) How does Augusto compare to state of the art testing tech-
niques in testing AIFs?

This research question investigates if testing the AIFs present in
an application with Augusto delivers better results than testing the
same functionalities with other approaches, thus motivating the
adoption of Augusto in addition to existing techniques. We used the
GUITAR [37] and ABT [29] testing techniques for the comparison.

To answer these research questions we developed a prototype
of Augusto for Java desktop applications. For the purpose of the
evaluation, we populated the AIF archive with the definition of
three AIFs: CRUD, that is adding, removing, updating and deleting
objects of a type; AUTH, that is signing up, signing in and signing
out from applications; and SAVE, that is saving data in files and
loading them. We produced these definitions before identifying
the subject applications. These AIFs are modelled according to the
common sense knowledge by the authors of this paper.

For our empirical study, we selected as subjects seven interactive
applications from different application domains, five of which were
already used in previous studies [5, 28, 29]: Buddi v3.4.0.8 [13], a
personal finance and budgeting program; UPM v1.6 [39], a pass-
word manager; Rachota 2.3 [26], personal tasks and activities man-
agement application; TimeSlotTracker v1.3.1 [9], another personal
tasks manager application; PDF-sam v0.7 [41], a tool for merging
and splitting PDFs; OnShop [24], a demo e-commerce application
available on git-hub; and Spark v2.7.5 [21], a LAN chat client. Since
a database is required to enable all the functionalities in Buddi and
UPM, we configured an initial db with custom data for Buddi and
an empty db for UPM.

The three techniques compared in RQ3 required the same con-
figurations, that is, a pool of input values that can be used during
the testing activity and the definitions of some configuration pa-
rameters. For all the techniques, we populated the pool of inputs
value with the same valid and invalid values, defined coherently
with the nature of the data processed by the subject applications.

In our evaluation, we used the best configuration possible for
each tool, based on our knowledge of the techniques. In Augusto,
we used a test case length of 15 GUI actions for all applications with
the exception of OnShop that has been tested with a test case length
of 22 actions. We set to 30 minutes the maximum amount of time
for the reification step. In ABT we used episodes of 30 actions (note
that since each episode can start from any state of the system, the
resulting test cases can have an arbitrary length) and the ϵ−greedy
policy with ϵ = 0.8, as used in ABT original paper [28]. In all
the experiments ABT has been executed for the same time than
Augusto. Finally, for GUITAR we generated the test cases using
the EFG model and 3-wise coverage for test case generation, which
guarantees GUITAR to be executed for a longer time (in some case
significantly longer) than Augusto, thus favouring GUITAR over
Augusto. Notice that we tried to use GUITAR also with other types
of models [5, 43], but we failed since the tool always produced
corrupted test suites despite our best effort (including the attempt
to receive support from the developers of the tool).

Since GUITAR and ABT are not limited to AIFs, simply running
the tools on the full applications would produce incomparable data
for RQ3. We know by construction that GUITAR and ABT can test
applications more broadly than Augusto and any result obtained by
these tools with non-AIFs could not be achieved with Augusto. The
purpose of RQ3 is to investigate if the opposite is also true, that is, if
Augusto can deliver better results than competing approaches when
testing AIFs. Only for the purpose of RQ3, to make this comparison
as fair as possible and have GUITAR and ABT spending all the
time testing AIFs only, as Augusto does, we modified the subject
applications disabling every functionality that is not an AIF.

Finally, to mitigate the randomness in the results, we repeated
all the experiments three times and reported average values.

4.1 RQ1 - AIF Detection
To answer RQ1, we studied the completeness and precision of the
algorithm for detecting AIFs. We first identified the AIFs actually
present in the subject applications by opening and inspecting every
window of every application looking for instances of the three
defined AIFs (CRUD, AUTH, SAVE). We identified a total of 17

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Leonardo Mariani, Mauro Pezzè, and Daniele Zuddas

Table 1: RQ1 - AIF Detection

AUT AIF ID Match Structure Sem. Properties
Compl. FP

UPM CRUD 1 yes precise 100% 0
SAVE 2 yes precise n/a n/a

Spark AUTH 3 (yes) precise 100% 0

Rachota CRUD
4 yes precise 100% 0
5 yes precise 100% 0.7
6 no - - -

OnShop AUTH 7 yes precise 100% 1.0

Buddi CRUD

8 yes lack delete button 100% 0.7
9 yes precise 100% 0
10 yes precise 100% 0
11 (yes) precise 50% 3.7
12 yes precise 100% 0

SAVE 13 yes lack replace file window n/a n/a
PDFsam CRUD 14 (yes) precise 100% 0

TTracker
CRUD 15 yes precise 100% 0
CRUD 16 no - - -
CRUD 17 no - - -

occurrences across the applications. Note that an AIF occurrence
is the occurrence of the set of operations specified in the AIF. For
example, an instance of a CRUD includes operations to create,
read, update and delete the entities of a kind. The applications and
their AIFs are reported in the AUT and AIF columns of Table 1,
respectively. Each AIF is associated with an identifier (column ID).

We then executed Augusto on the applications and checked
the discovered matches. We indicate the result of this check in
column Match: yes corresponds to the generation of a concrete
match that can be used for generating test cases, no indicates that
no match is found, and (yes) means that the match required manual
intervention to be found. Out of 17 cases, Augusto missed only 3
AIFs. For TTracker the missed matches are caused by the limitation
of the ripping phase that was not able to discover the GUI portions
that contain the AIFs. The missed AIF in Rachota was caused by
two CRUD AIFs sharing some windows, a case not supported by
Augusto. Augusto never identified a non-AIF functionality as an
AIF, that is, it never produced false positives during AIF detection.

Augusto required manual intervention to deal with cases not
supported by the prototype in 3 of the 14 identified AIFs. In the case
of Buddi (case 11), we manually excluded a Combo Box producing
behaviors that are not supported by our technique. To address
cases 3 and 14 we extended the definition of two GUI Patterns
to accept labels that are not typically used for the operations of
CRUD and AUTH. For instance, we set the label accounts as a valid
alternative of sign up/register in AUTH. Although these are
small interventions, they prevented the fully automatic execution
of the approach in three cases.

We also evaluated the accuracy of the discovered matches in
terms of the widgets included in the AIF match: Column Structure
indicates if the match includes all and only the widgets that we
manually identified as related to the AIF. The value precise indi-
cates a perfect match, that is, no missing neither unrelated widgets
associated with the AIF. Note that in 12 out of 14 cases Augusto pro-
duced a perfect match. In case 8 Augusto missed only an element,
reported in the table, due to particular implementation choices in
the application, and in case 13 Augusto missed a window because
of a bug in the application (the bug was then reported in the testing

Table 2: RQ2 - Effectiveness

AUT AIF ID Avg TC Avg Fail Avg FA Avg Fault #Fault (Crash)

UPM CRUD 1 17.7 6.7 0.3 2.0 3 (1)
Save 2 75.7 1.0 0.7 0.3 1 (1)

Spark Auth 3 33.7 6.7 6.7 0 0 (0)
Rachota CRUD 4 8.3 0.7 0.7 0 0 (0)

5 76.0 7.3 7.3 0 0 (0)
OnShop Auth 7 17.0 4.5 4.0 0.3 1 (0)

Buddi CRUD

8 17.0 5.5 5.5 0 0 (0)
9 18.0 2.7 2.7 0 0 (0)
10 18.7 0 0 0 0 (0)
11 22.7 12.7 6.3 1.0 1 (0)
12 19.3 0 0 0 0 (0)

Save 13 50.7 12.3 0 1.0 1 (0)
PDFsam CRUD 14 9.4 0 0 0 0 (0)
TTracker CRUD 15 11.7 0 0 0 0 (0)

Overall 7 (2)

phase). In no case Augusto associated unrelated widgets to the AIF,
that is, Augusto never confused the additional elements present in
a window with the ones that refer to the identified AIF.

We also evaluated the ability of Augusto to identify semantic
properties, in this case to identify the required and unique fields for
CRUD and AUTH AIFs. We evaluated this aspect by considering
completeness, defined as the percentage of required and unique
fields identified correctly by Augusto (column Compl.), and false
positives, defined as the average number of fields wrongly associ-
ated with a required or unique property (column FP). We report
the value n/a when the AIF does not include any semantic property
to be discovered.

The results obtained with semantic properties show that Au-
gusto is quite effective both in terms of completeness, only in one
case some fields have not been associated with the corresponding
property, and rate of false positives, only in four cases there are
false positives. Note that completeness and the number of false
positives associated with semantic properties could be improved
by allocating more time to the reification phase.

In a nutshell, Augusto has been able to identify the AIFs present
in the subject applications in 82% of the cases (in 3 cases requiring a
manual intervention) producing highly accurate matches, including
86% perfect matches. Moreover, it has been able to identify the vast
majority of the semantic properties present in the application.

4.2 RQ2 - Effectiveness
The effectiveness of testing techniques is typically assessed consid-
ering code coverage and their fault revealing ability. Since Augusto
does not target the whole application, code coverage metrics are
not informative. Thus, to answer RQ2 we evaluated Augusto con-
sidering its fault revealing ability. In particular, we measure the
number of faults revealed in the subject applications.

Table 2 reports for each AIF identified by Augusto, the average
number of generated test cases (column Avg TC), the average num-
ber of test cases that fail because of the violation of a functional
oracle (column Avg Fail), the average number of false alarms pro-
duced, that is, the number of failing test cases that do not expose
any fault in the program (column Avg FA), the average number of
faults detected per AIF in a run (column Avg Fault), and the total
number of faults detected in the three runs (column #Fault). Col-
umn #Faults also indicates the number of faults that cause program

Augusto ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 3: RQ3 - Comparison

AUT Time (h) Augusto ABT GUITAR
Reported Covered Reported Covered

UPM 3.0 4 2 1 1 1
Spark 2.0 0 0 0 0 0
Rachota 2.5 0 0 0 0 0
OnShop 8.0 1 0 0 0 0
Buddi 11.0 2 0 0 0 0
PDFsam 1.5 0 0 0 0 0
TTracker 1.5 0 0 0 0 0

Overall Reported 7 2 1

crashes. The classification of a failing test case as fault revealing or
as false alarm was performed manually by this paper’s authors.

The average number of test cases generated by Augusto varies a
lot, ranging from 8.3 to 76.0. This big variability, which might be
observed even for AIFs of the same kind in the same application
(e.g., see number of test cases for the CRUDs in Rachota), depends
on the specific structural match, concrete semantics and semantic
properties that are extracted. This shows how Augusto, although it
uses a built-in semantics for the AIFs, is able to flexibly adapt these
definitions to the specific case, generating a number of test cases
that depends on the actual complexity of the tested functionality.

Augusto may produce false alarms, as reported in the table. This
is due to two main reasons: acceptable mismatches between the
semantics model and the concrete behavior of the application, and
imprecise semantics properties inference. Both these sources of
imprecision cause the generation of an imprecise functional oracle.
Note that in several cases sets of failures refer to a same cause (e.g.,
a single imprecise property may cause the failure of multiple test
cases) and identifying the cause of the failure for one test can be
used to drastically reduce the inspection time of the other tests
failing for the same reason.

In the evaluation, Augusto has been able to reveal a total of 7
faults, with only two faults causing program crashes. This result
shows that the automatic functional oracle included in the test
cases is an essential element for revealing failures beyond crashes.

Augusto revealed some interesting faults, such as the one de-
scribed in the introduction of this paper. Another interesting fault
was detected in UPM: When editing the identifier of an account,
if the change is undo and the account is saved, the operation fails
with an error message stating that the identifier already exists, even
though the identifier is the current identifier of the edited account.

In a nutshell, Augusto has been able to generate a number of
test cases for the AIFs present in several applications and revealed
multiple faults, including several non crashing faults.

4.3 RQ3 - Comparison
Table 3 shows the results obtained by Augusto, ABT and GUITAR
when testing AIFs. Column SUT indicates the subject application.
Column Time reports the time spent by Augusto to test the ap-
plication. ABT has been executed for the same amount of time,
while GUITAR has been configurated to be executed at least for
that time. Column Augusto indicates the number of faults detected
by Augusto. For ABT and GUITAR the table distinguishes between
reported and covered faults. A reported fault is a crashing fault
revealed by ABT or GUITAR (ABT and GUITAR do not include a

functional oracle and can only reveal crashing faults). A covered
fault is a fault that has been activated by a generated test case, but
no failure has been reported due to the lack of an oracle.

All the faults reported and covered by ABT and GUITAR are a
subset of the faults reported by Augusto, confirming the higher
effectiveness of semantics approaches when testing AIFs. Augusto
has been able to test interesting cases and interesting combinations
of actions revealing 7 faults, while for 4 of these faults ABT and GUI-
TAR have not been even able to produce the sequence that covers
the faulty case. Moreover, even when ABT or GUITAR manage to
cover the fault, there is a good chance that the fault is not reported
due to lack of non-trivial oracles. In our evaluation, together ABT
and GUITAR reported 2 crashing faults and covered but did not
report another fault.

Finally, notice that Augusto computation time is compatible with
server-side quality assurance sessions as well as with overnight
usage of the technique. Augusto main performance bottleneck is
the constraint solving performed by the Alloy Analyzer to generate
test cases. This aspect might be potentially improved employing a
formula caching framework to reduce the need of constraint solving
and thus speeding up the technique [3, 4].

In a nutshell, compared to other state of the art techniques,
Augusto has been able to sample the execution space of the AIFs
more effectively and to report failures that could not be reported
by the competing approaches, at the cost of reporting some false
alarms. Augusto proved to be an effective complement to current
general purpose GUI testing techniques.

Limitations. Augusto most obvious limitation is that it can be
exploited to test only AIFs and cannot be used to test an arbitrary
functionality, while other approaches could in principle be exploited
to test any kind of operation, although their effectiveness depends
on the complexity of the tested operations.

In addition, Augusto depends on the AIF archive, which assumes
that the GUI of the tested application follows common sense, while
in practice people might do choices against common sense. More-
over, the patterns exploit labels, which makes the archive sensitive
to the language of the tested application and to the choice of terms.
This limitation can bemitigated definingmultiple patterns for differ-
ent languages and/or using automatic strategies to find synonyms
in a specific context, as done in the work by Mariani et al [30].

Threats to validity. A threat to internal validity is the generality of
the AIFs models that we used in our evaluation. To mitigate the risk
of defining models that fit the applications used in the evaluation
but not others, we defined the AIF archive before selecting the
subject applications.

Another threat to internal validity is related to the manual ac-
tivities performed by the authors to classify the failing test cases
reported by Augusto as faulty or false alarm, and to modify the
subject applications for RQ3. For the first threat, to reduce any
bias, only the failing test cases for which all the authors agree that
they expose a fault were classified as faulty. For the second threat,
after modifying the applications we verified that the AIFs continue
working the same including the presence of the faulty behaviors.

The external validity threats of our study relate to the generality
of the results with respect to the set of AIFs and set of applications

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Leonardo Mariani, Mauro Pezzè, and Daniele Zuddas

that we used. Although we cannot make claims about the general-
izability of the results to other AIFs, the AIFs that we used were all
successfully matched and have been all useful to reveal faults. We
thus expect Augusto to be able to effectively exploit other AIFs too.

In terms of subject applications, to mitigate any issue with gen-
eralizability, we selected applications that belong to a variety of
domains, most of which were already used in other studies, which
facilitates comparison, and experimented with a relatively high
number of AIFs per application.

5 RELATEDWORK
Automation has been investigated extensively in software test-
ing [2, 31]. Techniques for the automatic generation of system test
cases have focused on two classes of complementary approaches:
techniques that sample the execution space according to a model
derived from the GUI of the AUT, and techniques that sample the
execution space according to a model derived from the source code.

The techniques that use a model extracted from a GUI sample
the execution space according to a coverage criterion defined on
the model, such as covering every GUI action or every pair of
dependent GUI actions [1, 5, 32–35, 43]. These approaches can
uniformly sample the portion of the execution space represented in
the model but provide no guarantee on the semantic relevance of
the generate tests. On the contrary, Augusto includes mechanisms
to complete the initial GUI model and directly generate test cases
that cover semantically meaningful scenarios, thus avoiding to
waste time and resources on testing irrelevant scenarios.

Instead of generating the model and generating the test cases
in two sequential steps, ABT uses Q-Learning to build the model
while generating system test cases, alternating exploration and
exploitation activity [28, 29]. Although the test generation strategy
is different, ABT still generates test cases that may cover scenarios
that are relatively relevant on a testing perspective. As reported and
discussed in this paper, Augusto can be dramatically more effective
than these approaches in the domain of AIFs.

Other techniques exploit the AUT source code to apply sym-
bolic execution or search-based algorithms to test case genera-
tion [18, 19]. Although these techniques may cover meaningful
testing scenarios in the attempt to cover code statements, they are
still limited in their ability to capture the semantics of a program and
might hardly scale to complex GUIs and large programs. Augusto
overcomes both problems since it exploits semantics information
and does not depend on the source code.

More in general, none of these test case generation techniques can
reveal failures that do not cause crashes, which is a key ability of
Augusto, as reported in this paper.

The need of moving from explorative approaches mainly using
structural information to a different class of approaches that can
directly address the semantics of the AUT is also supported by stud-
ies such as the one by Choudhary et al. [14]. The study shows that,
even though there exist elaborated techniques that use complex
structural information, the most effective testing technique for An-
droid applications is still a technique that simply performs random
clicks on the GUI. We interpret this result as a clear evidence of
the ineffectiveness of automatic testing techniques if they are not
guided by semantic information and as a motivation for this work.

Other researchers approached the problem of generating seman-
tically relevant executions in a complementary, although related,
situation, that is, generating complex and semantically relevant
input data for testing [10, 11, 30, 38]. In particular, Link [30] can
exploit semantic Web technologies to generate sets of coherent
and semantically relevant input values to execute forms. These
solutions could be used to populate Augusto’s input values archive.

Previous works partially investigated the use of patterns to fa-
cilitate testing [17, 36, 44, 44]. Ermuth et al. proposed a technique
to infer macro-events, that is, GUI operations composed of several
low-level GUI events (e.g., open drop down menu and click on a
menu item) from usage traces. Differently from AIFs, macro-events
are application specific and do not include information on how
they may affect the application state. Zaeem et al. introduced the
concept of user-interaction features, that is, sequences of operations
without input-data that both have little impact on the application
state (e.g., double-screen-rotation and pause-and-resume) and have
a known effect. Compared to AIFs, user-interaction features are
rather simple, do not need to be discovered from the GUI, and have
a semantics that does not require adaptation. Moreira et al. instead
exploited UI design patterns. This approach shares some ideas with
Augusto, although Augusto has several unique capabilities: the au-
tomatic detection of known AIFs in a GUI, the automatic adaptation
of AIFs definitions to the actual semantics of the application, and
the automatic generation of test cases equipped with oracles.

Finally, Augusto is not the only technique that uses Alloy to
generate test cases. For instance, TestEra [25] can generate test
cases for Java methods from pre-post conditions written in Alloy.

6 CONCLUSIONS
This paper presents Augusto, a GUI test case generation technique
that can automatically produce system test cases for application-
independent functionalities (AIF) that: (i) systematically cover se-
mantically relevant scenarios and (ii) include precise functional
oracles that can reveal non-crashing faults. To obtain this result,
Augusto encodes the high-level commonly expected semantics of
AIFs into models that are automatically adapted to the specific
characteristics of the application under test.

Our empirical evaluation shows that Augusto can precisely iden-
tify AIFs and then generate complex test cases able to exercise and
report real non-crashing failures that cannot be detected with other
state of the art techniques. Indeed, of the 7 faults discovered by
Augusto only 2 could be reported by the competing approaches.

Our evaluation also shows that AIF models are quite resilient
to the minor differences that might occur between the different
implementations of a same AIF across different applications. For
instance, in the evaluation our AIF models required minor changes
only in 3 cases.

ACKNOWLEDGMENTS
This work is supported by the Swiss National Science Founda-
tion with the project “ASysT: Automatic System Testing” (grant n.
200021_162409) and by the H2020 "Learn" project funded under the
ERC Consolidator Grant 2014 program (ERC Grant Agreement n.
646867).

Augusto ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

REFERENCES
[1] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore

De Carmine, and Atif M. Memon. 2012. Using GUI Ripping for Automated
Testing of Android Applications. In Proceedings of the International Conference
on Automated Software Engineering (ASE ’12). ACM, 258–261.

[2] Saswat Anand, Edmund K Burke, Tsong Yueh Chen, John Clark, Myra B Cohen,
Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold, and Phil McMinn.
2013. An orchestrated survey of methodologies for automated software test case
generation. Journal of Systems and Software 86, 8 (2013), 1978–2001.

[3] Andrea Aquino, Francesco A. Bianchi, Meixian Chen, Giovanni Denaro, and
Mauro Pezzè. 2015. Reusing Constraint Proofs in ProgramAnalysis. In Proceedings
of the International Symposium on Software Testing and Analysis (ISSTA ’15). ACM,
305–315.

[4] Andrea Aquino, Giovanni Denaro, and Mauro Pezzè. 2017. Heuristically Match-
ing Solution Spaces of Arithmetic Formulas to Efficiently Reuse Solutions. In
Proceedings of the International Conference on Software Engineering (ICSE ’17).
IEEE Computer Society, 427–437.

[5] Stephan Arlt, Andreas Podelski, Clement Bertolini, Martin Schaf, Indradip Baner-
jee, and Atif M Memon. 2012. Lightweight static analysis for GUI testing. In
Proceedings of the International Symposium on Software Reliability Engineering
(ISSRE ’12). IEEE Computer Society, 301–310.

[6] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo.
2015. The Oracle Problem in Software Testing: A Survey. IEEE Transactions on
Software Engineering 41, 5 (2015), 507–525.

[7] Giovanni Becce, Leonardo Mariani, Oliviero Riganelli, and Mauro Santoro. 2012.
ExtractingWidget Descriptions fromGUIs. In Proceedings of the International Con-
ference on Fundamental Approaches to Software Engineering (FASE ’12). Springer,
347–361.

[8] Roland Bennett. Patternry. http://patternry.com/patterns/. (Accessed: 2017-08-
12).

[9] Roland Bennett. TimeTracker. https://sourceforge.net/projects/ttracker/. (Ac-
cessed: 2017-08-12).

[10] Christian Bizer, Tom Heath, and Tim Berners-Lee. 2009. Linked Data - The Story
So Far. International Journal on Semantic Web and Information Systems 5, 3 (2009),
1–22.

[11] Mustafa Bozkurt and Mark Harman. 2011. Automatically generating realistic
test input from web services. In Proceedings of the International Symposium on
Service Oriented System Engineering (SOSE ’11). IEEE Computer Society, 13–24.

[12] Marco Brambilla and Piero Fraternali. 2014. Interaction flow modeling language:
Model-driven UI engineering of web and mobile apps with IFML. Morgan Kauf-
mann.

[13] Buddi. The Digital Cave. http://buddi.digitalcave.ca. (Accessed: 2017-08-12).
[14] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Auto-

mated Test Input Generation for Android: Are We There Yet?(E). In Proceedings
of the International Conference on Automated Software Engineering (ASE ’16). IEEE
Computer Society, 429–440.

[15] Stephen A. Cook. 1971. The Complexity of Theorem-proving Procedures. In
Proceedings of the Annual ACM Symposium on Theory of Computing (STOC ’71).
ACM, 151–158.

[16] Dropbox. Yesterday’s Authentication Bug. https://blogs.dropbox.com/dropbox/
2011/06/yesterdays-authentication-bug/. (Accessed: 2017-08-12).

[17] Markus Ermuth and Michael Pradel. 2016. Monkey see, monkey do: Effective gen-
eration of GUI tests with inferred macro events. In Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA ’16). ACM, 82–93.

[18] Svetoslav Ganov, Chip Killmar, Sarfraz Khurshid, and Dewayne E Perry. 2009.
Event listener analysis and symbolic execution for testing GUI applications. In
Formal Methods and Software Engineering. Springer, 69–87.

[19] Florian Gross, Gordon Fraser, and Andreas Zeller. 2012. Search-based system test-
ing: high coverage, no false alarms. In Proceedings of the International Symposium
on Software Testing and Analysis (ISSTA ’12). ACM, 67–77.

[20] Kelly J Hayhurst and Dan S Veerhusen. 2001. A practical approach to modi-
fied condition/decision coverage. In 20th DASC. 20th Digital Avionics Systems
Conference. NASA Langley Technical Report Server, 1B2/1–1B2/10 vol.1.

[21] Igniterealtime. Spark. https://igniterealtime.org/projects/spark. (Accessed: 2017-
08-12).

[22] Daniel Jackson. 2002. Alloy: a lightweight object modelling notation. ACM
Transactions on Software Engineering and Methodology 11, 2 (2002), 256–290.

[23] Jenkins. ISSUE 25012. https://issues.jenkins-ci.org/browse/JENKINS-25012?jql=
issuetype. (Accessed: 2017-08-12).

[24] Himalay Joriwal. OnlineShopping. https://github.com/himalayjor/
OnlineShoppingGUI/tree/master/OnlineShopping. (Accessed: 2017-08-12).

[25] Shadi Abdul Khalek, Guowei Yang, Lingming Zhang, Darko Marinov, and Sarfraz
Khurshid. 2011. TestEra: A Tool for Testing Java Programs Using Alloy Speci-
fications. In Proceedings of the International Conference on Automated Software
Engineering (ASE ’11). IEEE Computer Society, 608–611.

[26] Jiri Kovalsky. http://rachota.sourceforge.net/en/index.html. (Accessed: 2017-08-
12).

[27] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: multi-objective automated
testing for Android applications. In Proceedings of the International Symposium
on Software Testing and Analysis (ISSTA ’16). ACM, 94–105.

[28] Leonardo Mariani, Mauro Pezzè, Oliviero Riganelli, and Mauro Santoro. 2012.
AutoBlackTest: Automatic Black-Box Testing of Interactive Applications. In Pro-
ceedings of the International Conference on Software Testing, Verification and
Validation (ICST ’12). IEEE Computer Society, 81–90.

[29] Leonardo Mariani, Mauro Pezzè, Oliviero Riganelli, and Mauro Santoro. 2014.
Automatic testing of GUI-based applications. Software Testing, Verification and
Reliability 24, 5 (2014), 341–366.

[30] Leonardo Mariani, Mauro Pezzè, Oliviero Riganelli, and Mauro Santoro. 2014.
Link: Exploiting the Web of Data to Generate Test Inputs. In Proceedings of
the International Symposium on Software Testing and Analysis (ISSTA ’14). ACM,
373–384.

[31] Leonardo Mariani, Mauro Pezzè, and Daniele Zuddas. 2015. Recent Advances in
Automatic Black-Box Testing. In Advances in Computers. Elsevier.

[32] Atif M. Memon, Ishan Banerjee, and Adithya Nagarajan. 2003. GUI Ripping:
Reverse Engineering of Graphical User Interfaces for Testing. In Proceedings
of The Working Conference on Reverse Engineering (WCRE ’03). IEEE Computer
Society, 260–269.

[33] Atif M. Memon, Ishan Banerjee, Bao Nguyen, and Bryan Robbins. 2013. The
First Decade of GUI Ripping: Extensions, Applications, and Broader Impacts. In
Proceedings of The Working Conference on Reverse Engineering (WCRE ’13). IEEE
Computer Society, 11–20.

[34] Atif M. Memon and Qing Xie. 2005. Studying the Fault-Detection Effectiveness
of GUI Test Cases for Rapidly Evolving Software. IEEE Transactions on Software
Engineering 31, 10 (2005), 884–896.

[35] Ali Mesbah, Engin Bozdag, and Arie van Deursen. 2008. Crawling AJAX by Infer-
ring User Interface State Changes. In Proceedings of the International Conference
on Web Engineering (ICWE ’08). ACM, 122–134.

[36] Rodrigo MLM Moreira, Ana CR Paiva, and Atif Memon. 2013. A pattern-based
approach for GUI modeling and testing. In Proceedings of the International Sym-
posium on Software Reliability Engineering (ISSRE ’13). IEEE Computer Society,
288–297.

[37] Bao N Nguyen, Bryan Robbins, Ishan Banerjee, and Atif Memon. 2014. GUITAR:
an innovative tool for automated testing of GUI-driven software. Automated
Software Engineering 21, 1 (2014), 65–105.

[38] Muzammil Shahbaz, Phil McMinn, and Mark Stevenson. 2012. Automated Dis-
covery of Valid Test Strings from the Web Using Dynamic Regular Expressions
Collation and Natural Language Processing. In Proceedings of the International
Conference on Quality Software (QSIC ’12). IEEE Computer Society, 79–88.

[39] Adrian Smith. Universal Password Manager. http://upm.sourceforge.net/index.
html. (Accessed: 2017-08-12).

[40] Jenifer Tidwell. 2010. Designing interfaces: Patterns for effective interaction design.
"O’Reilly Media, Inc.".

[41] Andrea Vacondio. PDFsam. https://sourceforge.net/projects/pdfsam/. (Accessed:
2017-08-12).

[42] Martijn van Welie. Pattern library. http://www.welie.com/patterns/index.php.
(Accessed: 2017-08-12).

[43] Xun Yuan, Myra B Cohen, and Atif M Memon. 2011. GUI Interaction Testing:
Incorporating Event Context. IEEE Transactions on Software Engineering 37, 4
(2011), 559–574.

[44] Razieh Nokhbeh Zaeem, Mukul R Prasad, and Sarfraz Khurshid. 2014. Automated
generation of oracles for testing user-interaction features of mobile apps. In
Proceedings of the International Conference on Software Testing, Verification and
Validation (ICST ’14). IEEE Computer Society, 183–192.

