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ABSTRACT
We present the Java Bytecode Symbolic Executor (JBSE), a
symbolic executor for Java programs that operates on com-
plex heap inputs. JBSE implements both the novel Heap
EXploration Logic (HEX), a symbolic execution approach
to deal with heap inputs, and the main state-of-the-art ap-
proaches that handle data structure constraints expressed as
either executable programs (repOk methods) or declarative
specifications. JBSE is the first symbolic executor specifically
designed to deal with programs that operate on complex
heap inputs, to experiment with the main state-of-the-art
approaches, and to combine different decision procedures to
explore possible synergies among approaches for handling
symbolic data structures.

CCS Concepts
•Software and its engineering → Software testing
and debugging; Formal software verification;

Keywords
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1. INTRODUCTION
Symbolic execution was introduced almost forty years ago

[22, 8] for testing software systems, and is now a mature
technique that finds relevant applications. Industrial sym-
bolic executors like SAGE [17], Pex [31], JPF-SE [1], Apollo
[2] and Klover [18] analyse x86 binaries, .Net, Java, Php and
C++ programs, respectively.

Advances in constraint satisfiability and dynamic sym-
bolic execution have improved the applicability and scala-
bility of symbolic execution, and current symbolic execution
approaches address well many of the problems that arise
when symbolically executing software systems. Dynamic
symbolic execution mixes symbolic with concrete execution
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to deal both with formulas that cannot be (efficiently) solved
by a constraint solver and with the imprecision caused by
the interaction with external code. Combinations of sym-
bolic execution with control flow analysis [7], random test-
ing [25] and evolutionary search [3] guide the exploration
of the execution space to mitigate the path explosion prob-
lem. Compositional techniques compute and reuse function
summaries to reduce the amount of proofs required during
symbolic execution [16]. Klee and jCute incrementally solve
constraints that allow for similar solutions to improve the
speed of constraint solving [7, 30]. Klee [7] and SAGE [17]
model pointers using the theory of arrays with selections and
updates implemented by solvers to accurately model mem-
ory, and deal with pointers.

Following the impressive advances of symbolic execution
and the maturity of many research and industrial symbolic
executors, recent research approaches focus on the problem
of efficiently executing programs that operate on complex
heap inputs. To efficiently deal with heap inputs, symbolic
execution needs to take into account the assumptions that
characterize the dynamic data structures allocated in the
heap to avoid exploring infeasible traces.

Lazy initialization approaches cope with heap inputs by
enriching the path conditions with assumptions that identify
the heap states that determine the execution of the different
paths [21, 10, 5, 29]. Lazy initialization systematically enu-
merates all the possible objects that can bind to the refer-
ences in the input heap, and identifies alternative path con-
ditions for each binding. Plain lazy initialization is a brute
force enumeration of the possible input heap states, and may
produce many path conditions that violate assumptions of
the data structures in the heap. For example, when analyz-
ing a program that takes as input a doubly-linked list, any
assumption that binds the references next and previous be-
tween consecutive list nodes in a way that breaks the mutual
reachability of the nodes invalidates the path conditions.

Many approaches enrich lazy initialization with constraints
that capture the properties of the input data structures, and
use such properties to limit the enumeration of infeasible
input states. The main approaches proposed so far either
enumerate the valid (non-partial) symbolic data structures
before starting symbolic execution [10, 29] or interleave sym-
bolic execution with the evaluation of the structural prop-
erties. The evaluation approaches include both executing
checking programs that encode the structural properties op-
erationally [32] and querying some established satisfiabil-
ity prover that evaluates property specifications in some
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Figure 1: Logical architecture of JBSE

logic [19, 27, 28, 26, 13].
In a recent paper we introduced the Heap EXploration

Logic (HEX) to efficiently address the problem of symbol-
ically executing programs that manipulate complex input
data structures in the heap. Differently from previous ap-
proaches, HEX enables to evaluate the properties of the data
structures incrementally, that is, reasoning separately on any
new assumption taken in the lazy initialization algorithm
without having to reconsider the previous assumptions ev-
ery time, with major performance improvements [6].

This demo paper presents the Java Bytecode Symbolic
Executor (JBSE), a symbolic executor for Java augmented
with a decision procedure for HEX, which drives the sym-
bolic evaluation of dynamic heap data structures. JBSE cur-
rently implements the main state-of-the-art approaches that
handle data structure constraints, expressed as either exe-
cutable programs (repOk methods [23]) that check the heap
state against the invariants of the data structures [10, 32],
or declarative specifications in different languages, includ-
ing HEX [6], Alloy [19] and the Pointer Assertion Logic
(PAL) [27].

This paper presents (i) the first symbolic executor specif-
ically designed to deal with Java programs that depend on
complex heap inputs, (ii) an implementation of the HEX
decision procedure that evaluates HEX properties to drive
the symbolic execution, (iii) a parametric decision procedure
that allows both comparative and integrated experiments
with different approaches.

The remainder of this paper is organized as follows. Sec-
tion 2 presents JBSE and recalls the essential elements of
HEX. Section 3 introduces the demonstration artefact that
provides empirical evidence of the maturity and scalability
of JBSE and HEX on a set of experiments. Section 4 sum-
marizes the contribution of the paper.

2. JBSE
JBSE is a symbolic executor specifically designed to ana-

lyze and generate test cases for software systems that take
as input both numeric values and heap data structures.

Figure 1 illustrates the logical architecture of JBSE and
highlights the set of decision procedures implemented within
the tool. The available decision procedures, abstracted with
the API Decision Procedure, include a classic solver for nu-
meric constraints that JBSE instantiates with Z3 [9] and a set
of heap solvers1 that solve the constraints on the input heap

1The demonstration package described in Section 3 includes

expressed in different languages and with different checking
engines:

HEX The decision procedure for our novel approach HEX [6].
We recall the essential elements of HEX at the end of this
section.

RepOk The classic approach that rely on evaluating repOk

methods to enumerate the valid instances of a data structure
upon the first access to a symbolic reference that points to
the data structure [10].

ConservativeRepOk The approach of Visser et al., who ex-
tend the repOk methods as executable properties that can
be conservatively evaluated against partially initialised data
structures [32].

Alloy The use of the Alloy bounded satisfiability prover [19],
to verify the satisfiability of properties of the the data struc-
ture specified in Alloy, provided an upper bound to the num-
ber of objects that can be part of the initial heap.

PALE The use of the Pointer Assertion Logic Engine (PALE)
decision procedure for unbounded problems that builds on
monadic second order logic [27].

While the concepts embodied in the decision procedures
based on repOk methods have been proposed in the context
of the symbolic execution of heap data structures, the use of
HEX, Alloy and PALE in the context of symbolic execution
is an original contribution of JBSE.
JBSE can be configured with any subset of decision proce-

dures, and can thus provide experimental data to compar-
atively evaluate the decision procedures used alone, as well
as any combination of them.

When used with multiple decision procedures, JBSE links
Decision Procedure in a chain (relation next in Figure 1).
When refining the current path condition with a new as-
sumption, JBSE queries the first-choice decision procedure,
and accepts or discards the current symbolic state based
on the satisfiability of the path condition as given by the
decision procedure. If the decision procedure is inconclu-
sive, JBSE moves to the next decision procedure (if any)
until either obtaining a conclusive verdict or exhausting the
available decision procedures.

The core novelties of JBSE are the implementation of dif-
ferent decision procedures according to the logic architec-
ture illustrated in Figure 1, and the decision procedure that
implements the HEX approach [6] and that we summarize
below.

Figure 1 highlights the components that comprise the de-
cision logic of JBSE when configured to work with HEX with
a grey background. In this configuration, JBSE sends all sat-
isfiability queries to the HEX heap solver, which delegates
Z3 to determine the validity of the assumptions on primitive
variables, and works out the path conditions when the novel
assumptions predicate on references to heap objects.

While the state-of-the-art checking engines re-evaluate the
consistency of the whole symbolic heap for each new as-
sumption that emerges during symbolic execution, the HEX
specifications of the structural properties of data structures

the documentation of the API to extend JBSE with addi-
tional heap solvers.



any.root(.left|.right) ∗ instanceof BTNode

aliases nothing (1)

any.root(.left|.right) + .parent instanceof BTNode

aliases ref.up.up (2)

any.root(.left|.right) ∗ .parent instanceof BTNode

expands to nothing (3)

any.root(.left|.right) + .parent instanceof BTNode

not null (4)

any.root.parent instanceof BTNode

aliases nothing (5)

Figure 2: HEX properties of a binary tree

can be checked incrementally against each newly taken as-
sumption. Thus, the HEX checking engine works separately
on each assumption, with significant performance gains.

Figure 2 illustrates the core aspects of HEX through the
example specification of the properties of a binary tree data
structure. Each property specification consists of (i) a regu-
lar expression pattern over field names to identify references
to heap objects, (ii) an object type that indicates the objects
which the property applies to, and (iii) a constraint on the
possible initializations of the references that match with the
pattern and the object type.

In Figure 2, the pattern any .root.(left|.right)∗ in prop-
erty (1) identifies any reference that is reachable from the
root node of the tree (field root) by traversing some se-
quence of children (a chain of accesses through fields left

and right), and that refers to an object of type BTNode.
The pattern states that these references cannot be alias of
other references (alias nothing); thus excluding data struc-
tures that are not trees.

The other properties encode the assumptions that char-
acterize the parent relation in a tree: The parent reference
must always be an alias of the immediate predecessor of its
owner object (aliases ref.up.up in property (2)), can never be
a newly assumed object (expands to nothing in property (3)),
and cannot be null (not null in property (4)) with the ex-
ception of the parent of the root node that cannot accept
any alias (aliases nothing in property (5)) and thus must be
null.

The HEX decision procedure checks for the validity of as-
sumptions on the references in the input heap by checking
whether the references involved in the assumptions match
both the pattern and the object type of any property, and
discards the matching references that contradict the initial-
ization constraints.

3. DEMONSTRATION ARTEFACT
The JBSE demonstration artefact presents empirical data

about the maturity and scalability of JBSE to analyze non-
trivial Java programs that operate on complex heap data
structures. The artefact provides evidence of the effective-
ness and efficiency of the JBSE symbolic executor and the HEX
heap solver to symbolically execute programs that operate
on various types of heap data structures, including classic
recursive data structures commonly used in many applica-
tion domains and application specific data structures. It
also shows the relative strengths and weaknesses of the dif-

ferent heap solvers integrated in JBSE. Both JBSE2 and the
demonstration artefact3 are available as open source.

The demonstration artefact includes 274 experiments that
challenge JBSE to analyze classes that manipulate classic
recursive data structures provided as input in the heap,
and 3 experiments that illustrate the ability of JBSE to an-
alyze components of open source projects. The classic re-
cursive data structures considered in the experiments are
Java classes that implement doubly-linked lists and balanced
(both red-black and AVL) trees [12, 14]. The open source
components considered in the experiments are TSAFE and
two components of Google Closure-compiler project.

TSAFE is the Tactical Separation Assisted Flight Envi-
ronment, an air traffic control application [11]. Its inputs
include data structures that record the position and the
movements of the aircraft in the controlled space. TSAFE
has been a popular benchmark in the community for many
years now. The demonstration artefact provides empirical
evidence of the effectiveness of JBSE to analyse a set of cor-
rectness properties of the TSAFE system.

The Google Closure-compiler project is a popular tool
that operates on parse tree inputs for optimizing JavaScript
code.4 The demonstration artefact provides empirical evi-
dence of the effectiveness of JBSE to generate test cases that
reveal known faults for two different versions of the Google
Closure-compiler project, which we refer to as Closure37 and
Closure72, respectively [20].

The experiments with the classic recursive data structures
illustrate the ability of JBSE to deal with complex constraints
of different nature, the experiments with the open source
components provide data about the behavior of JBSE in the
presence of software of growing size. The classes that im-
plement the classic data structure cumulatively amount to
1,048 lines of code, while the classes analyzed in TSAFE,
Closure37 and Closure72 amount to 607, 7,972 and 5,972
lines of code, respectively. The artefact includes the spec-
ification of the properties of all data structures referred in
the experiments in all the languages accepted by the heap
solvers implemented in JBSE.

The artefact demonstrates the contribution of JBSE for the
analysis of programs that operates on complex heap data
structures with three sets of experiment pools: the clas-
sic symbolic execution, the HEX symbolic execution and the
comparative symbolic execution pool.

The classic pool illustrates the problems and limitations
of classic symbolic execution when dealing with complex
heap data structures. It considers the JBSEZ3 configuration,
where the decision procedure is instantiated with the Z3
numeric solver only, without any heap solver. The JBSEZ3

configuration is a classic symbolic executor that implements
(unconstrained) lazy initialization to enumerate the heap
configurations that determine the execution of the different
program paths. The experiments show that JBSEZ3 analyzes
massive amounts of infeasible executions, largely hampering
performance and scalability.

The HEX pool illustrates the effectiveness and efficiency
of JBSE and HEX. It considers the JBSEHEX configuration,
where the decision procedure is instantiated with the HEX

heap solver paired with Z3, and indicates that the HEX heap

2http://pietrobraione.github.io/jbse
3https://sites.google.com/site/pietrobraione/fse2016
4https://code.google.com/p/closure-compiler



Table 1: Feasible/Infeasible execution traces computed with JBSE combined with the different heap solvers
HEX RepOk ConsRepOk Alloy PALE

Subject F I F I F I F I F I

TSAFE 290 0 560 1,690 290 840 290 0 n.a.∗

Closure37 2,856 0 6,016 90,240 2,856 3,570 2,856 0 n.a.∗

Closure72 925 0 1,110 25,850 925 24,120 925 0 n.a.∗

Data structures 42,966 0 329,185 0 41,227 447,350 41,227 0 1,768 616
∗
PALE does not support cyclic graphs of objects and thus cannot model the invariants for this data type

Table 2: Absolute/relative execution time in minutes of JBSE combined with the different heap solvers
HEX RepOk ConsRepOk Alloy PALE

Subject Time Time /HEX Time /HEX Time /HEX Time /HEX

TSAFE 2 9 (4×) 52 (26×) 56 (28×) n.a.∗

Closure37 7 154 (22×) 41 (6×) 306 (44×) n.a.∗

Closure72 2 12 (6×) 251 (125×) 17 (8×) n.a.∗

Data structures 26 43 (2×) 1322 (51×) 1881 (72×) 1412 (54×)
∗
PALE does not support cyclic graphs of objects and thus cannot model the invariants for this data type

solver effectively selects only the feasible execution traces,
thus avoiding wasting the analysis budget on infeasible ex-
ecutions. The experiments confirm that JBSEHEX analyzes
only the feasible executions with massive performance im-
provements with respect to JBSEZ3.

The comparative pool compares the heap solvers imple-
mented in JBSE, namely, HEX, RepOk, ConservativeRepOk,
Alloy and PALE. Table 1 and Table 2 summarize the re-
sults of the comparative pool.5 Table 1 reports the amount
of both feasible and infeasible execution traces (columns F
and I, respectively) that JBSE computes in each experiment
when configured with any of the available heap solvers, and
Table 2 reports the time that JBSE takes to complete the ex-
ecution of each experiment as both the absolute number of
minutes (columns Time) and the relative time with respect
to HEX (columns /HEX ).

In both tables, rows TSAFE, Closure37 and Closure72
report the data computed during the analysis of the 3 open
source components when JBSE is configured with the differ-
ent heap solvers, with the exception of PALE, which does
not support cyclic graphs of objects. Rows Data structures
report the data cumulatively achieved across the 274 exper-
iments with the recursive data structures.

The data in Table 1 confirm that HEX and Alloy analyze
only feasible executions, while the other approaches (RepOk,
ConservativeRepOk and PALE) analyze many infeasible ex-
ecutions. The data also indicate that the RepOk approach,
which näıvely evaluates the invariants of the data structures
at the beginning of the symbolic execution of the target pro-
grams, results in analysing significantly larger amounts of
feasible executions than the other approaches. The reason
is that the RepOk approach suffers from over-constraining
the symbolic inputs, that is, it fosters the analysis of multi-
ple distinct assumptions on objects and fields that are not
accessed in the programs. HEX suffers from limited over-
constraining problems only in the red-black tree experiment,
where it augments the valid symbolic states with assump-
tions on the red/black status of the internal data nodes, to
assist the incremental evaluation of the invariants.

Table 2 shows the execution time of JBSE when combined
with the different heap solvers. These data confirm the rel-

5The detailed results of all the experiments are included in
the demonstration package.

evant improvement of HEX over all alternative approaches.
In summary, our experiments indicate that only HEX and

Alloy are fully precise, that is, they do not select infeasi-
ble executions. RepOk and ConservativeRepOk fail to cope
with complex invariants involving more than one input data
structure, while PALE cannot specify circular data structures
and cannot reason on relations between object structures
and numeric fields. HEX outperforms all other approaches in
efficiency, confirming the benefits of incrementally checking
constraints as in HEX rather than re-evaluting the validity
of the whole heap at each step. In particular HEX is from 8
to 72 times quicker than Alloy, the only other precise ap-
proach. The readers must also notice that the performance
of Alloy depends on scope bounds of the Alloy analyzer.
Determining the optimal scope bounds, that is, the small-
est scope bound that preserves precision, is a very expensive
human activity that the data reported in the figure do not
consider. The demonstration artefact uses optimal bounds
for all programs, bounds that we found after many explo-
rative runs of the symbolic executor, but such a fine tuning
is hardly sustainable in practice.

4. CONCLUSIONS
This demo paper presents JBSE, the first symbolic execu-

tor specifically designed to deal with programs that operate
on heap data structures. JBSE provides the first implementa-
tion of the HEX symbolic execution approach, and provides
the support for experimenting with different approaches to
identify symbolic data structures, as well as for combining
different decision procedures and explore possible synergies.

The demo package provides a framework for evaluating
JBSE and the HEX approach both in isolation and in compar-
ison with RepOk, ConservativeRepOk, Alloy and PALE, and
includes data that confirm our research hypothesis about
the efficiency of incrementally checking the constraints that
characterize complex heap inputs.
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