
Do Developers Update Third-Party Libraries in Mobile Apps?

Pasquale Salza
USI Università della Svizzera italiana

Switzerland

pasquale.salza@usi.ch

Fabio Palomba
University of Zurich

Switzerland

palomba@ifi.uzh.ch

Dario Di Nucci
Vrije Universiteit Brussel

Belgium

ddinucci@vub.ac.be

Cosmo D’Uva
University of Salerno

Italy

Andrea De Lucia
University of Salerno

Italy

adelucia@unisa.it

Filomena Ferrucci
University of Salerno

Italy

fferrucci@unisa.it

ABSTRACT

One of the most common strategies to develop new software is to

take advantage of existing source code, which is available in com-

prehensive packages called third-party libraries. As for all software

systems, even these libraries change to offer new functionalities

and fix bugs or security issues. The way the changes are propagated

has been studied by researchers, interested in understanding their

impact on the non-functional attributes of the systems source code.

While the research community mainly focused on the change prop-

agation phenomenon in the context of traditional applications, only

little is known regarding the mobile context. In this paper, we aim

at bridging this gap by conducting an empirical study on the evolu-

tion history of 291 mobile apps, by investigating (i) whether mobile

developers actually update third-party libraries, (ii) which are the

categories of libraries with respect to the developers’ proneness

to update their apps, (iii) what are the common patterns followed

by developers when updating a software library, and (iv) whether

high- and low-rated apps present peculiar update patterns. The

results of the study showed that mobile developers rarely update

their apps with respect to the used libraries, and when they do,

they mainly tend to update the libraries related to the Graphical

User Interface, with the aim of keeping the mobile apps updated

with the latest design tendencies. In some cases developers ignore

updates because of a poor awareness of the benefits, or a too high

cost/benefit ratio. Finally, high- and low-rated apps present strong

differences.

CCS CONCEPTS

• Software and its engineering→ Software evolution;

KEYWORDS

Third-Party Libraries, API Usage, Empirical Study, Mining Software

Repository

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5714-2/18/05. . . $15.00
https://doi.org/10.1145/3196321.3196341

ACM Reference Format:

Pasquale Salza, Fabio Palomba, Dario Di Nucci, Cosmo D’Uva, Andrea De

Lucia, and Filomena Ferrucci. 2018. Do Developers Update Third-Party Li-

braries in Mobile Apps?. In ICPC ’18: 26th IEEE/ACM International Conference

on Program Comprehension , May 27–28, 2018, Gothenburg, Sweden. ACM,

New York, NY, USA, 11 pages. https://doi.org/10.1145/3196321.3196341

1 INTRODUCTION

Software reuse is a common policy in modern development prac-

tices, because it avoids the costs related to the implementation of

complex functions and modules as well as guarantees the usage

of source code previously tested and validated [39]. Nowadays,

even more companies develop software by means of Application

Programming Interfaces (APIs), i.e., a set of subroutines and func-

tionalities made available in the form of comprehensive packages,

called third-party libraries, to allow other software systems to evolve

by re-using such components. As an example, some of the largest

software factories such as Google or Apple provide hundreds of

APIs that allow software houses and newcomers to build upon these

APIs their own software and re-distribute it into the market.

However, similarly to all the other software systems, even li-

braries need to change to be adapted to new market requirements

and/or to be fixed with regard to bugs experienced by clients. There-

fore, every update issued by the providers contains improvements

aimed at making more stable and reliable the external APIs on

which other systems are build. As soon as a new update is made

available, the developer of an app that was using a previous version

of the library may decide to upgrade it to inherit all the improve-

ments implemented. Nevertheless, it can happen that a new version

may require too much effort to be included in a project or simply

be buggy, thus not being considered for an upgrade of its version.

For the same reason, the developer may consider a downgrade to a

previous version instead of an upgrade, in order to guarantee the

stability of the app.

The way the changes made to libraries are propagated through

the clients has been studied by researchers in the last years, which

were interested in understanding the dynamics behind the update

strategies as well as the effects of such changes to client systems.

Most of them have devoted effort in studying the APIs usage in

traditional applications from different perspectives, such as (i) the

reasons pushing developers in using a specific version of anAPI [25],

(ii) themechanisms adopted to guarantee backward compatibility [4,

35], and (iii) the impact of API deprecations on the source code of

client systems [6, 13, 36, 43].

255

2018 ACM/IEEE 26th International Conference on Program Comprehension

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden P. Salza et al.

Despite the important effort conducted by the research commu-

nity in the context of traditional applications, only a little knowl-

edge on how third-party libraries are treated in mobile apps is

available so far. Indeed, while existing studies have been conducted

to evaluate the diffuseness of third-party libraries inmobile apps [23,

30, 42], the impact of their non-functional attributes on the com-

mercial success of mobile apps [5, 9], and their visualization [26, 27],

up to date there is still lack of knowledge about the extent to which

the phenomenon of change propagation is present in mobile ap-

plications. Investigating such a phenomenon is of a paramount

importance since (i) the continuous release cycle [32], (ii) the vi-

tal importance that non-functional requirements have for mobile

applications [10, 12], and (iii) the presence of active communities

continuously requesting changes through user reviews [8, 34] make

mobile apps deeply different from traditional applications, possibly

leading developers to follow development practices which are un-

usual in other contexts [15]. As a consequence, understanding the

mobile developers’ behavior with respect to the management of

libraries becomes a major challenge to face toward the definition of

techniques and tools supporting them during their daily activities.

Thus, in this paper we aim at providing a large-scale empirical

investigation on how mobile developers perform updates of used

version of libraries in their code. Specifically, we mined the evolu-

tion history of the 291 Android apps in order to study the change

propagation problem under four different perspectives:

(1) we studied whether mobile developers update the used ver-

sion of external libraries;

(2) we performed a fine-grained investigation of the categories of

libraries for which developers are more prone to update the

used versions, shedding lights on the likely reasons pushing

developers in having more care of them;

(3) we extracted the common patterns followed by mobile de-

velopers to update the use of libraries by means of an open

coding procedure;

(4) we verified whether high- and low-rated apps present pecu-

liar trends in the way developers update third-party libraries.

In this paper we refer to version change to indicate every type

of change performed by developers of a mobile app in the usage

of a third-party library, i.e., a version change can be an upgrade

toward a newer version of a library or a downgrade toward a lower

one. In the first place, the results of the study highlight that only

38 % of the external libraries in our dataset have been subject to

at least one version change during the evolution history of the

analyzed apps. Moreover, most of the updates are focused on third-

party libraries related to the GUI of the app (≈50 %) or tools aimed at

supporting development activities (27 %). By studyingmore in depth

the likely causes behind the higher number of version changes for

these categories, we discovered that developers aim at keeping the

graphical user interface up to date with the latest tendencies, or

updating Android support tools in order to develop for the latest

Android versions. On the other hand, the results show that the main

causes for the 62 % of libraries, whose version is not changed, are

the carelessness of developers or a high cost/benefit ratio. Finally,

we found that only 15 % of the library uses have been updated

constantly during the evolution of the apps, and that most of them

are related to successful apps.

Replication package. Besides the contributions reported above,

we provide a comprehensive replication package containing the

raw data and scripts used to carry out the empirical study [37].

Structure of the paper. The paper is organized as follows. Sec-

tion 2 describes the design of the empirical study, while Section 3

reports and discusses the obtained results. Section 4 analyzes the

threats that could affect the validity of the results of the study.

Section 5 overviews the related literature on third-party libraries

usage in traditional and mobile applications, and their effects, while

Section 6 concludes the paper.

2 EMPIRICAL STUDY DESIGN

The goal of the empirical study is to analyze (i) whether mobile

developers update the version of third-party libraries in their apps,

(ii) which libraries developers are more and less prone to update,

(iii) how developers react when new updates of libraries are avail-

able, and (iv) whether high- and low-rated apps present different

trendswith respect to the update of third-party libraries. The quality

focus is improving software maintainability, by understanding how

the phenomenon of libraries update is carried out. The perspective

is of both researchers and practitioners: the former are interested

in understanding the strategies adopted by mobile developers in

the update of libraries, the latter in analyzing if successful apps are

different from the others in terms of update patterns.

In Section 2.1 we present the research questions of the study.

Section 2.2 describes the context of the study, in particular the

Android app projects we selected and related libraries. The data

mining process we devised is illustrated in Section 2.3 whereas

Section 2.4 describes the applied analysis method.

2.1 Research Questions

In the context of the study we formulated the following research

questions:

RQ1 To what extent mobile developers update the version of used

third-party libraries?

RQ2 Which types of third-party library uses are more prone to be

updated?

RQ3 Which types of third-party library uses are generally not up-

dated?

RQ4 What types of update patterns developers follow when updating

the third-party libraries?

RQ5 Are the update patterns of high-rated and low-rated apps dif-

ferent?

The update of libraries is an essential part of software development,

since it allows programmers to take advantage of the new func-

tionalities as well as the improvements (e.g., bug fixing) over older

versions of libraries. The first research question of the study aims at

investigating whether mobile developers actually update libraries in

mobile apps. Thus, RQ1 can be considered as a preliminary coarse-

grained analysis that allows to quantify the developers’ activities

in updating the external libraries.

With RQ2 and RQ3 we further analyzed the phenomenon by

conducting a fine-grained exploration into the types of libraries

whose uses are more likely updated, aiming at understanding what

categories (e.g., security) developers are more and less sensitive to,

and what are the possible reasons behind their behavior.

256

Do Developers Update Third-Party Libraries in Mobile Apps? ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

RQ4 aims at analyzing how developers update the used libraries.

Specifically, we are interested in observing and possibly delineating

a trend in the developers’ reactions when an update of a library is

available, with the goal of understanding whether they steadily up-

date the libraries, or if the updates are rarely done. In the following,

we will mention such trends as “update patterns”.

Finally, RQ5 characterizes the update patterns of high- and low-

rated mobile apps, with the aim of understanding whether the two

sets of apps present different trends in the way developers updated

third-party libraries.

2.2 Context Selection

The context of the study consists of the entire change history of

291 Android apps randomly selected from the F-Droid repository1,

which is a catalog of Free and Open Source Software (FOSS). The

dataset size was identified using the Stats Engine tool2, which

allowed us to find an appropriate sample size to allow the gener-

alizability of the results on the entire population, i.e., the whole

set of apps composing F-Droid. More specifically, the dataset size

represents a 95 % statistically significant stratified sample with a 5 %

confidence interval of the 1181 apps currently available on F-Droid

having more than 1 third-party library. It is worth noting that the

selected apps belong to different categories and have different scope

and size. A detailed report of the characteristics of the apps used in

this study is available in the online appendix [37].

All the selected projects provide their source code in a public

repository on GitHub and use Gradle as build system. As for the

libraries, they are all publicly available on different repositories,

e.g., Maven, JCenter, Bintray.

2.3 Data Mining Process

To answer to the identified research questions, we first needed to

extract data from various sources. Therefore, we devised a data

mining automated process, based on different components and

operations. Our main aim was to collect the information regarding:

(i) when the version of a library declared in a project changed, i.e.,

library update; (ii) when that library was upgraded by its developers,

i.e., library release update. Collecting this data, we were able to

compare the version change events with the releases of libraries,

thus answering all the research questions.

Figure 1 shows the process we applied for each considered app:

1) F-Droid parsing: the F-Droid repository data, provided as a

single XML file, was parsed in order to retrieve the public repository

address of the source code.

2) Source code repository cloning: once established the pub-

lic address of the repository, we performed a full repository Git

cloning (i.e., project downloading, including all the commits) in our

local storage. In the case of SVN repositories, we first performed an

SVN to Git conversion by using the git svn bridging command.

3) Git commits extraction: we iterated through the list of com-

mits by using the git checkout operation, and saved the files

belonging to each single snapshot in separate directories. It allowed

1https://f-droid.org
2https://www.optimizely.com/statistics/

�������

	�
������

������������

	�����������
����

	�
�������
���

�����
��

�����
��

�����
��

����������

����������

����������

����
�
	�
�������
���

����
�
������������
������
�����

 ��
������������

������
������������

� �
�

�

�

�

Figure 1: The data mining process used in the study.

us to physically reproduce the status of the app source code during

its entire development history.

4) Gradle libraries parsing: we explored the commit direc-

tories and parsed the build.gradle files to retrieve the decla-

rations of third-party libraries dependency for the app. The li-

braries were reported with the general pattern: <configuration>
<group>:<name>:<version>. It is worth noting that the Gradle
definition language allows to express library version declarations

in different syntax ways, thus we included other patterns in the

parsing operation. In this way, we collected the employment of the

libraries, reporting the versions during the history of each observed

app project.

5) Dependencies mining: once we collected the list of libraries

and the specific versions for each commit, we queried the most used

repositories for Android libraries, e.g., Maven, JCenter, Bintray,

looking for the release dates of those versions. We performed a

“trial and error” process to find the repository having that piece of

information. In some particular cases, the libraries were released

as a GitHub open source project, thus we queried the releases list

to retrieve the dates. For the Android SDK libraries, we directly

queried the Google servers and retrieved the release dates as HTTP

content publishing dates.

6) Data storing:As a final step, using a Python script we grouped

all the information on the library version changes and releases for

each app in the form of a CSV file containing the following four

columns: (1) the “group”, i.e., the suffix of the library name, to which

a certain library belongs, (2) the “name”, i.e., the actual name of the

library, and (3) the “version”, i.e., the label of the library used in a

certain moment, (4) the “date”, i.e., describing the date of the event,

following the ISO-8601 format.

The data extraction process took approximately 4 weeks, using 4

Linux workstations, each having 8 cores CPU and 8GB of RAM. It

is worth remembering that the CSV files obtained at the end of the

mining process are publicly available in the online appendix [37].

2.4 Analysis Method

Once completed the data extraction process, we answered to RQ1.

Firstly, we computed the number of times the version of libraries

were changed, i.e., considering how many times the declaration

257

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden P. Salza et al.

of the library in the build.gradle file changed over time, with
respect to the number of times a new version of the library was

issued. In this way, we were able to understand whether the uses

of such libraries are updated or not in the subject apps.

Secondly, we characterizedwhether the observed version changes

referred to “upgrades”, i.e., a version change made to catch the latest

release update of a library, or “downgrades”, i.e., version change

to restore an old version of a library. To distinguish between the

two categories of version changes, we mined the version history of

the libraries available in the Maven repository, analyzing which of

them were used by a certain mobile app during its history. Specif-

ically, starting from the first commit on the repository until the

end of the observed history, we iteratively considered commit pairs

(Ci ,Ci+1) and compared the build.gradle files in the two snap-
shots. For each library Lk used by an app, if the release version

declared in the build.gradle of Ci+1 was higher than the release
version declared in the build.gradle of Ci (according to the ver-
sion history on Maven), then we considered it as an upgrade of

Lk . Otherwise, if the release version of Lk in Ci+1 was lower than
the release version of Lk in Ci , we counted a downgrade for Lk . In
Section 3 we reported the boxplots describing the distribution of

the number of upgrades and downgrades for the investigated apps.

As for RQ2 and RQ3, we categorized the libraries using the tax-

onomy provided by Maven. This was done automatically using the

data collected when mining the dependency management system.

Indeed, Maven provides a high-level categorization for each library

studied, e.g., the com.google.code.findbugs library is included
in the Code Analyzer category since it provides users with a static
code analyzer able to discover possible bugs in the source code.

Once assigned the investigated libraries to the corresponding

category, we repeated the same analyses made for RQ1, counting

the number of updates for the libraries in a certain category and the

number of upgrades and downgrades occurring in each category.

Moreover, we complemented this analysis by means of qualitative

examples aimed at understanding the likely reasons behind the

higher/lower updates of libraries in given categories. To this aim,

we manually analyzed commit messages and comments left on

the repository by the developers of the apps presenting the higher

and lower version change with respect to a certain category. It is

important to note that this qualitative investigation had not the

goal to systematically analyze and classify all the possible causes

leading developers to update or not a library version, but instead

that of finding likely reasons behind upgrades and downgrades

occurring on specific categories.

To determine the update patterns and answer toRQ4, we adopted

an open coding process and distributed between the participants

the library version changes history of all the observed applications.

We distributed a total of 1126 library histories. To this aim, we

randomly divided the data among four of the authors (≈282 per

author). Each of the involved authors independently analyzed the

waymobile developers update the version of the libraries, by relying

on a graphical representation of the evolution of a library version

change in a given mobile app. Looking at the graphs, the involved

authors independently classified an update-pattern using a label,

e.g., “diligent update” when the version of a library was constantly

changed during the evolution of a certain app. Figure 2 depicts one

of the graphs analyzed during the open coding procedure, referring

5.0.1

5.1.0

5.1.1

5.1.2

6.0.0

6.1.0

7.0.0

7.0.1

8.0.0

20
14

-0
4-

01

20
14

-0
5-

01

20
14

-0
6-

01

20
14

-0
7-

01

20
14

-0
8-

01

20
14

-0
9-

01

20
14

-1
0-

01

20
14

-1
1-

01

20
14

-1
2-

01

20
15

-0
1-

01

20
15

-0
2-

01

20
15

-0
3-

01

20
15

-0
4-

01

20
15

-0
5-

01

20
15

-0
6-

01

20
15

-0
7-

01

20
15

-0
8-

01

20
15

-0
9-

01

20
15

-1
0-

01

20
15

-1
1-

01

20
15

-1
2-

01

20
16

-0
1-

01

20
16

-0
2-

01

20
16

-0
3-

01

20
16

-0
4-

01

20
16

-0
5-

01

Date

V
er

si
on

Type Release Use

Figure 2: An example of update pattern, the

com.jakewharton:butterknife library evolution for the

com.fastebro.androidrgbtool app.

to the library com.jakewharton:butterknife used by the app

AndroidRGBTool. The red line represents the evolution history

of a library: the y-axis reports all the versions of the library, while

the x-axis reports the time expressed in terms of months. The blue

line represents instead the evolution history of the library usage in

the context of the specific mobile app considered. Looking at the

figure, it is clear that the AndroidRGBTool’s developers constantly

changed the version of the library used as soon as a new release

was available. This was classified, therefore, as a “diligent update”.

Once the first step of the open coding procedure was concluded,

the authors discussed their codings in order to (i) double-check the

consistency of their individual categorization, and (ii) refine the

identified categories by merging similar categories they identified

or splitting when it was the case. To evaluate the open coding

process, we computed the level of agreement between the authors

using the widely known Krippendorff’s alpha Krα [17]. As a result,

the agreement was equal to 0.87, thus being considerably higher

than the 0.80 standard reference score [1] for Krα . In Section 3,

we reported the percentage of times we classified specific update

patterns, by also providing qualitative examples aimed at explaining

the underlying reasons behind the observed behaviors.

Finally, to answer RQ5 we needed to extract the ratings asso-

ciated to the user reviews of the considered apps. To this aim, we

developed a web scraper that extracts the user reviews directly

from the Google Play Store, where they are publicly available.

Afterwards, we followed the heuristics defined by Khalid et al. [16]

to discriminate high- and low-rated apps. In particular, apps whose

average ratings were strictly higher than 3.5 were considered as

high-rated, otherwise they were marked as low-rated. Once the

two sets were formed, we verified the distribution of each update

pattern discovered in the context of RQ4 in the two app types.

3 RESULTS

In this section we discuss the results achieved aiming at answering

the formulated research questions.

258

Do Developers Update Third-Party Libraries in Mobile Apps? ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

Table 1: Distribution of Third-Party Libraries in our dataset.

Min. 1st Quart. Median Mean 3rd Quart. Max.

1 1 2 3.8 5 35

3.1 RQ1 – To what extent mobile developers
update the version of used third-party
libraries?

Before discussing the results for RQ1, it is worth observing the

diffuseness of third-party libraries usage in our dataset. As it is

possible to see from Table 1, all the apps rely on at least 1 external

library: while this is quite expected (Android apps need to refer

to the android.core library to be run), it is also important to

observe that the average usage of libraries is almost 4, with apps

even reaching 35. Over 42 % of the libraries refer to the categories

Graphical User Interface (GUI) and Utilities. On the one hand, it

means that developers often rely on libraries providing a set of

tools for the implementation of GUIs, rather than implementing

their own GUI. On the other hand, libraries providing support tools

(e.g., network connection facilities) are appreciated by developers.

The analysis of the diffuseness is needed to support our work.

Indeed, a better exploration of the phenomenon may be useful

for researchers and practitioners to focus their effort on devising

specific techniques and tools to support the evolution of libraries.

Turning the attention to the first research question, we found

that 33 % of the libraries are subject to at least one version change,

while the version of the remaining ones has never been updated

since its introduction. The result is symptomatic since it seems that

Android programmers tend to not update the version of used ex-

ternal libraries, being more prone to inherit bugs or vulnerabilities

present in older versions of the used libraries. Interestingly, we also

observed that a very low percentage of commits (on average 2 %)

involves the version change of a library. This somehow confirms

that Android developers are poorly interested in updating the ver-

sion of used libraries. It is worth noting that we are aware that a

missing update might be due to the library being not updatable: a

deeper investigation into this aspect is presented in RQ3.

Looking more in depth at the types of version changes performed

by developers, Fig. 3 shows the box plots reporting the total number

of (i) total version changes, (ii) changes toward newer versions (i.e.,

upgrades), and (iii) changes toward older versions (i.e., downgrades)

27, 29, 33,
34, 39, 68

21, 35 33

0

5

10

15

20

Changes Upgrades Downgrades

Figure 3: Third-party libraries changes, upgrades and down-

grades over the 291 apps considered in our study.

performed on each subject apps over the considered timeline. The

first thing that leaps to the eye is that the number of upgrades is

higher than the downgrades. Indeed, 74.05 % of the version changes

are represented by upgrades, while 25.95 % of them are downgrades.

This result matches common expectations, since the upgrade of

a used library version should represent the normal situation in

which developers get the latest available version. Instead, more

interesting is the analysis of downgrades. Even if both the median

and the third quartile of the distribution are equal to 0, we observed

110 outliers (corresponding to the 10 % of the total version changes)

that indicate how in some cases developers “refuse” a more re-

cent version of a third-library. To better understand the reasons

behind this anomalous phenomenon, we manually analyzed the

apps having a higher number of downgrades. In 8 cases (1 % of

the total, and 7% of outliers) we found that where a consistent

number of downgrades was performed, a high number of upgrades

was applied as well. It is the case of the com.owncloud.android

app, which is a system that allows the management and sharing

of synced files and folder across devices. The app depends on the

com.android.support:appcompat−v7 library, which is needed to
implement a Material Design interface. In the period that we con-

sidered, the version of this library was upgraded and downgraded

(from version 19.1.0 to version 22.2.1, and viceversa) 33 times.
This behavior was instigated by the fact that the upgrade broke the

building process, as reported on the issue tracker3:

“Anyone, any idea why the build fails? The classes nec-

essary for compile (even for the first commit!) need com-

pile com.android.support:appcompat−v7 to resolve the

imports which have been included in the gradle file...

does maven need to be updated too?!”

From this example, it seems that developers downgrade the ver-

sion library only when a previous upgrade of that library caused

issues not easily addressable for developers. We observed a similar

behavior even when analyzing the other outliers, thus confirming

the previous finding.

In summary

Developers rarely update third-party libraries in mobile apps,

i.e., only 2 % of commits. When an update is performed, it is

usually an upgrade toward a newer version. However, in some

cases developers prefer to downgrade because of the issues

caused by a previous upgrade.

3.2 RQ2 – Which types of third-party library
uses are more prone to be updated?

In our dataset, we found 28 categories for the external libraries

version changes of the 291 Android apps analyzed. Table 2 shows

the top 10 categories of libraries considered in the study whose

version has been most changed by developers of mobile apps.

Looking at the table, it is evident howmost of the libraries whose

versions are more frequently changed by developers relate to the

GUI category. While this result may be a natural consequence of

the high diffuseness of GUI libraries, it is also worth noting that this

3https://github.com/owncloud/android/pull/1070

259

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden P. Salza et al.

Table 2: The 10 categories of third-party libraries with more

version changes.

Category Changes Upgrades Downgrades

Graphical User Interface 808 607 201

Utilities 478 351 127

HTTP 60 38 22

Page Navigation 42 24 18

JSON 30 18 12

Annotations 23 23 0

Google Services 15 12 3

Date and Time 14 12 2

Device 14 9 5

HTML Parser 9 7 2

category is the one having the highest number of upgrades: thus,

we can confirm the previous findings achieved by Hou et al. [14]

on the importance of such libraries for developers. The frequent

version changes of these libraries can be explained in two ways.

On the one hand, most of the comments received by developers

from the Google Play Store are related to the GUI of the application,

as demonstrated in previous work [33, 34]. Thus, developers are

more interested in updating the graphical user interface to fix issues

experienced by users. On the other hand, the higher attention is

motivated by the fact the developers want to keep the user interface

up to datewith the latest tendencies. The latter claim is supported by

the manual analysis we made on the repositories of the subject apps.

In particular, we found several cases where the commit message

associated to the version change of a GUI library mentioned the

willingness of developers to improve the layout of the GUI. An

example is reported in the za.co.lukestonehm.logicaldefence

app, where we discovered the following commit message:

“Update com.android.recyclerview−v7 to get new fancy

icons.”

At the same time, libraries belonging to the category Utilities are

often updated as well. This is because most of the tools provided

by such libraries support developers during their activities, e.g., in

the case of com.android.support, that provides APIs for upload-
ing/downloading files from a remote server. The high number of

upgrades (see Table 2) is motivated by the fact that developers are

enforced to upgrade them as new Android versions are released.

For instance, the com.android.support library mentioned above
is constantly modified when new versions of the Android SDK are

available: as a consequence, developers need to perform upgrades

in order to use the new supports provided. As an example, we

found that in the de.geeksfactory.opacclient app, a developer

upgraded the version of com.android.support library, leaving the
following commit message:

“Update android.support to have an environment equiv-

alent to the android platform.”

All the other libraries whose version changes is high perform vari-

ous tasks related to the development of mobile apps (e.g., JSON).

However, the update of such libraries is not common as the one of

the libraries in theGUI and Utilities categories. This result somehow

Table 3: The 10 categories of third-party libraries with less

version changes.

Category Changes Upgrades Downgrades

Defect Detection 1 1 0

Bug Fix 1 1 0

Network 1 1 0

Protocol Buffers 1 1 0

SQL 1 1 0

Test Automation 1 1 0

Notification 2 1 1

Barcode 2 2 0

Cryptographic 2 2 0

Event Bus 2 2 0

confirms previous findings on the evolution of mobile apps. Specif-

ically, Zhang et al. [44] demonstrated how during the evolution of

mobile apps the first Lehman’s law (i.e., continuous change [20])

holds for classes belonging to the GUI, while other pieces of code

are changed only if strictly needed. The way developers update li-

braries seems to confirm this statement, since almost all the libraries

that are not related to GUI are poorly maintained by developers.

In summary

Third-party libraries related to the graphical user interface or

providing support tools for development are the ones having

the highest number of version changes in the mobile apps

using them. This is mainly due to the will of developers to

(1) keep the GUI always up to date with the latest graphical

tendencies, or (2) update Android support tools to support the

latest Android versions.

3.3 RQ3 – Which types of third-party library
uses are generally not updated?

The version changes of almost 63 % of libraries was declared and

never updated by the developers of the mobile apps in our dataset.

In particular, despite 30 % of them was not updatable, as no newer

version was available, another 33 % of them could be updated. This

behavior somehow confirms the findings achieved in the first two

research questions, since it shows once again that mobile developers

are rarely interested in changing the versions of the used libraries.

Table 3 reports the 10 categories of libraries for which a ver-

sion change was possible but whose version is less changed in the

analyzed apps. As the reader can observe, most of the libraries in

these categories perform specific additional tasks that go beyond

the development of functional requirements of the app (e.g., Defect

detection libraries help developers in findings compile-time errors).

Although some of the libraries in these categories are quite diffused

(e.g., Notification), their version is never changed. Looking more in

depth at the likely causes for the missing updates, we discovered

two main reasons. On the one hand, often developers simply do

not care about the version change of libraries. On the other hand,

260

Do Developers Update Third-Party Libraries in Mobile Apps? ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

the excessive effort needed to update the source code after the in-

troduction of a new version of a library is an important factor to

take into account. In the first case, we observed a consisted number

of cases where the developers discussed the possibility to update

the source code on their communication channels, concluding the

discussion with ignoring the update. For example, on October 2016

a new version of the jsonrpc library (Protocol Buffer category) was
available for the org.xbmc.kore app. The developers discussed of

the version change on the issue tracker, mentioning potential secu-

rity issues related to the use of HTTP GET requests. Such discussion

was ended by one of the developers in the following way:

“My 2 cents. This is an extreme case, and it doesn’t

justify the upgrade of the library.”

After this comment, the issue was marked as “Closed”. We found

other similar examples in the other apps analyzed, and thus we can

conclude that one of the reasons behind missing version changes is

that developers consciously ignore them. This result allows us to

claim that more empirical studies aimed at showing the impact of

missing version change for the maintainability and security aspects

of the source code might be useful for making developers aware of

the negative consequences of ignoring the updates of libraries.

In the second case, by mining the software repositories and the

mailing lists of the subject apps, we observed several cases where

the developers refused an upgrade because they considered the

cost/benefit ratio too high. For instance, it is worth mentioning

the case of the uk.org.ngo.sqeezer app: here the version of the

library eventBus is never updated. On February 2016 a new version

of the library was available, and the two main developers of the

app discussed, on the issue tracker of the application, about the

possibility to update the library. The analysis of pros and cons of

the update ended with a total agreement of the developer in not

upgrading the used version of the library, since it would require the

modification of several classes and methods of the app. In particular,

they motivated their choice as follows:

“This would require more changes to the Squeezer code,

so I don’t recommend working from that.”

This example is quite representative and shed lights on an impor-

tant research aspect worth of a deeper investigation in the future,

i.e., making techniques and tools available for (1) automatically

updating dependencies, or (2) effort-aware prioritization able to

suggest developers a list of library version to update based on the

total amount of code to be modified as a consequence of the update.

In summary

Most of the versions of the libraries are not updated: while 30 %

of them cannot be updated because of the lack of new versions,

almost 33 % of third-party libraries is never upgraded to newer

versions. The two more likely reasons behind this behavior are

(1) the carelessness of developers, and (2) the high cost/benefit

ratio.

Table 4: Results of the open coding procedure.

Pattern Number Percentage (%)

Updated Once 97 9

Diligent 148 13

Jump Up 144 13

Jump Down 3 0

Back & forth 28 2

Not Updating 709 63

2.7.1
2.7.2
2.7.3
2.7.4
2.7.5
2.8.0
2.9.0
2.9.1

2.10.0
2.10.1
2.10.2
2.10.3
2.10.4
2.10.5
2.10.6
2.10.7
2.10.8
2.10.9

2.10.10
2.11.0

20
15

-0
1-

01

20
15

-0
2-

01

20
15

-0
3-

01

20
15

-0
4-

01

20
15

-0
5-

01

20
15

-0
6-

01

20
15

-0
7-

01

20
15

-0
8-

01

20
15

-0
9-

01

Date

V
er

si
on

Type Release Use

Figure 4: An example of jump up pattern, the

com.nispok:snackbar library evolution for the

com.androzic app.

3.4 RQ4 – What types of update patterns
developers follow when updating the
third-party libraries?

Even if most of the version changes of libraries are rarely or never

updated, it is interesting to understand if there are common update-

patterns occurring when developers decide to perform an upgrade

of their external libraries. Table 4 reports the classification of the

update-patterns obtained as a result of the open coding procedure.

As it is possible to see, in 9 % of cases, the version of a library was

changed in a given version of the app and then it disappeared in the

immediately subsequent commit: we call this pattern as updated

once. This category mainly refers to “abandoned” apps, i.e., apps

that are not developed anymore: this happens for 95 out of the total

97 libraries in this category. A clear example is represented by the

ormlite library of the gracecode.android.presentation app, an

app to manage image galleries. The library version was changed in

the commit performed on December 26th, 2014, which is exactly

the last commit on the repository.

Much more relevant is the analysis of the pattern called diligent.

It is the pattern containing the cases where developers constantly

update the libraries, being always able to get the latest version of a

library. We found a total of 148 diligent patterns, corresponding to

the 13 % of the total libraries updated at least once. These results

confirm the findings discussed above: only a limited percentage of

developers are actually interested in updating the libraries.

261

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden P. Salza et al.

19.0.0

19.0.1

19.1.0

20.0.0

21.0.0-rc1

21.0.0

21.0.2

21.0.3

22.0.0

22.1.0

22.1.1

22.2.0

22.2.1

23.0.0

20
13

-1
0-

01

20
13

-1
1-

01

20
13

-1
2-

01

20
14

-0
1-

01

20
14

-0
2-

01

20
14

-0
3-

01

20
14

-0
4-

01

20
14

-0
5-

01

20
14

-0
6-

01

20
14

-0
7-

01

20
14

-0
8-

01

20
14

-0
9-

01

20
14

-1
0-

01

20
14

-1
1-

01

20
14

-1
2-

01

20
15

-0
1-

01

20
15

-0
2-

01

20
15

-0
3-

01

20
15

-0
4-

01

20
15

-0
5-

01

20
15

-0
6-

01

20
15

-0
7-

01

20
15

-0
8-

01

20
15

-0
9-

01

Date

V
er

si
on

Type Release Use

Figure 5: An example of jump down pattern, the

com.android.support:appcompat−v7 library evolution

for the org.cipherdyne.fwknop2 app.

The third update-pattern we classified is called jump up, and

refers to cases where developers missed several version changes of

a library before deciding to perform an upgrade toward a higher ver-

sion of the library. Globally, we observed 144 cases, i.e., 13 % of the

libraries that were updated at least once follow this update-pattern.

An interesting case is the one of the com.androzic app, where

the library com.nispok.snackbar (whose evolution is depicted in
Fig. 4) has been firstly introduced in the app on December 2014,

when the version 2.7.1 was available. Then, during the evolution
of the app, several newer versions of the library became available,

however the developers did not change the version used until May

2015, when the current available version of the library was the

2.10.6. Further analyzing this specific case, we found that the

developers performed the upgrade only when the source code be-

came not compatible anymore with the older version of the library.

Indeed, the developer performing the commit left this message:

“Fix compatibility issue by updating the build.gradle

file.”

Another pattern recognized is named jump down that represents

the opposite of the jump up pattern described above. Indeed, it

arises when developers decide to perform a downgrade toward a

much lower version of the library. We identified this pattern in only

3 cases. One of this cases refer to the org.cipherdyne.fwknop2

app where the library com.android.support:appcompat−v7 was
introduced on June 2015 (see Fig. 5). Immediately after the intro-

duction of the version 22.1.1, the library created compatibility

issues that enforced developers in downgraded the library toward

the 19.0.0 version. When committing the library downgrade, the

developer left the following message:

“Downgraded dependency version due to compatibility

issues with the fwknopd service package.”

Finally, the last pattern is called back & forth. It refers to the

cases in which developers tried to upgrade the used version of

a library several times, restoring each time an older version. We

observed this pattern in 28 cases, i.e., 2 % of the library version

changes followed this pattern.

21.0.3

22.0.0

22.1.0

22.1.1

22.2.0

22.2.1

23.0.0

23.0.1

20
14

-1
2-

01

20
15

-0
1-

01

20
15

-0
2-

01

20
15

-0
3-

01

20
15

-0
4-

01

20
15

-0
5-

01

20
15

-0
6-

01

20
15

-0
7-

01

20
15

-0
8-

01

20
15

-0
9-

01

Date

V
er

si
on

Type Release Use

Figure 6: An example of back & forth pattern, the

com.android.support:cardview−v7 library evolution for the

com.dolphinemu.dolphinemu app.

A representative example is depicted in Fig. 6, reporting the

case of the library com.android.support:cardview-v7 of the app
org.dolphinemu.dolphinemu, a Nintendo and GameCube simu-

lator. As it is possible to see, between May and September 2015

the developers of the app continuously upgraded and downgraded

the library. This was due to continuous issues that developers had

with the visualization of the cards representing the characters of

the simulated games. In particular, the developers experienced a

different bug every time they tried to upgrade the library. One

of the comments left on July 2015 perfectly explains the types of

difficulties developers sometimes have to face:

“I’m getting crazy!!! I’m restoring the old version of that

library hoping in good times!”

This example clearly highlights how more research aimed at pro-

viding automatic tools for third-party libraries update is needed.

Finally, we noticed that in the remaining cases library uses are not

updated after their introduction. This occurs in 63 % of cases.

In summary

Developers follow peculiar update patterns when dealing with

library updates. Only in 13 % of the cases the used external

libraries are constantly updated by developers, while we found

that in 63 % of the cases external library uses are never updated

after their introduction.

3.5 RQ5 – Are the update patterns of
high-rated and low-rated apps different?

Figure 7 shows the distribution of each update pattern across the

high- and low-rated apps of our dataset. As it is possible to observe,

we recognized the prevalence of two specific update patterns, i.e.,

diligent (89 % vs 11 %) and jump up (78 % vs 22 %), in the high-rated

apps. On the contrary, back & forth (79 % vs 21 %), jump down (66 %

vs 34 %), and updated once (70 % vs 30 %) were more frequent in the

low-rated apps. Interestingly, we observed that the not updating

262

Do Developers Update Third-Party Libraries in Mobile Apps? ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

70%

11%
22%

66%
79%

52%

30%

89%
78%

34%
21%

48%

0%

25%

50%

75%

100%

Updated Once Diligent Jump Up Jump Down Back & Forth Not Updating

Rating High Low

Figure 7: Distribution of each update pattern on high- and

low-rated apps in our dataset.

pattern is almost equally distributed across the two sets, i.e., 52 %

in case of low-rated apps and 48 % for the high-rated ones.

These results allow us to claim that successful apps are those

whose developers update third-party libraries in a diligent way,

thus properly following the releases of the library with the aim of

including in the app the latest functionalities available in a library.

Although several other factors might have influenced the results

(e.g. app domain or popularity) and despite the fact that we cannot

speculate on the reasons behind them, we believe that our findings

provide initial hints of the importance that third-party libraries

updates might have for the commercial success of mobile apps.

At the same time, the results achieved when considering the low-

rated apps seem suggesting that a poor management of libraries

has a negative effect on the ratings provided by end users on the

Google Play Store: this might be due to the inclusion of bugs

and/or security issues inherited by the third-party libraries [5].

In summary

89 % of diligent update patterns belong to high-rated apps,

while 70 % of the updated once patterns were found on low-

rated apps. This seems suggesting a relationship between the

update of third-party libraries and the ratings assigned by end

users on the store.

4 THREATS TO VALIDITY

This section describes the threats that may have affected the validity

of the study.

Construct Validity. Threats in this category are mainly related

to the effectiveness of the tools built in order to mine data from

the different software repositories analyzed. Before employing the

tools, we carefully tested them against a sample set of mobile apps

coming from the F-Droid repository. Moreover, we made all the

tools publicly available for replication purposes [37].

Conclusion Validity. Threats to conclusion validity concern the

relation between the treatment and the outcome. In the context of

RQ4 we adopted an open coding procedure to identify the common

update-patterns followed by mobile developers. This procedure

involved the authors, who firstly independently classified a part

of the libraries histories considered in this study, and then were

involved in an open discussion with the aim of double-checking

the previous classifications. Still, we cannot exclude imprecisions

and/or some degree of subjectiveness (even if mitigated through

the discussion).

Another threat in this category is represented by the presence

of abandoned apps, which might have influenced the achieved

results. For this reason, we repeated the analyses by excluding the

abandoned projects, i.e. the ones having no commits during the

last year. The results of this additional analysis are consistent with

those reported in Section 3, thus confirming our findings.

Our findings might be also influenced by the replacement of

libraries made by developers during the apps evolution. However,

we plan to assess the effect of library replacements on the results

as part of our future research agenda.

Finally, in RQ5 there might have been other factors related to

the success of the apps presenting the update patterns investigated.

We are aware of this: we plan to further investigate the causation

of the relation between third-party updates and ratings as part of

our future research agenda.

External Validity. Threats to external validity concern the gener-

alization of results.We analyzed 291Android apps from the F-Droid

repository. Such a set represents a 95 % statistically significant strat-

ified sample with a 5 % confidence interval of the 1181 apps, cur-

rently available on F-Droid, having more than 1 third-party library

. Furthermore, it is worth noting that we analyzed 188 years of

change history and 291 third-party libraries. Despite this, we are

aware that we considered Android open-source apps only. Com-

mercial apps, as well as the apps coming from other distribution

platforms should be analyzed to corroborate our findings.

5 RELATEDWORK

The phenomenon of third-party libraries version changes (i.e., change

propagation or ripple effect) is a topic that has been studied in the

context of both traditional applications [4, 11, 19, 25, 35, 36] and

mobile apps [23, 24, 28, 30]. At the same time, the research com-

munity devoted effort in understanding the effects of updates on

non-functional attributes of source code (e.g., fault-proneness [22].

5.1 Third-Party Libraries Usage in Mobile Apps

Mobile apps differ from traditionally studied applications [27, 40].

Thus, most of the previous empirical studies conducted on third-

party libraries in traditional applications usage have been revised.

Linares-Vasquez et al. [23] decompiled and analyzed 24 379 APKs

from the Google Play Store, discovering that in 82 % of the cases

third-party libraries were used.

Ruiz et al. [30] studied code reuse in 4323 Android apps extracted

from 5 categories of the Google Play Store, finding that 61 % of all

classes in each category of mobile apps occur in 2 or more apps,

and 217 mobile apps are reused completely by another mobile app

in the same category. Their study was estended [28] by considering

208 601 apps, confirming the previous findings. Similar results were

obtained by Minelli and Lanza [26, 27] and Viennot et al. [42].

Azad et al. [2] proposed a new tool able to analyze the APIs usage

and suggest similar APIs based on Stack Overflow discussions.

Borges and Valente [7] applied association rule mining to learn

an API usage model. To this aim, they extended APIMiner [31] to

263

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden P. Salza et al.

collect usage patterns and APIs documentation and validated the

obtained patterns.

Backes et al. [3] proposed a library detection technique that is

resilient against common code obfuscation techniques and that is

capable to identify the library version used in apps.

Our paper investigates aspects that were not considered in pre-

vious research, being therefore complementary.

5.2 Effects of Third-Party Libraries on Mobile
Apps

Linares-Vasquez et al. [22] analyzed the effect of the change- and

fault-proneness of Google APIs on the commercial success of mo-

bile apps, discovering that apps having low ratings tend to use

change- and fault-prone APIs. Such correlation has been confirmed

by 45 Android developers [5]. According to these findings, Linares-

Vasquez [21] proposed an API recommendation system able to avoid

the introduction of defects.

Tian et al. [41] extracted APIs information and evaluated 1492

apps in terms of 28 factors along eight dimensions to understand

how high-rated apps are different from low-rated apps. They found

that size, number of images included in the web store page, and

target SDK version are the most influential factors.

Third party libraries also impact the apps security. Dering and

McDaniel [9] analyzed libraries and permissions of 450 000 free

apps, finding a strong correlation between the number of external

libraries used in the apps and the number of requested permissions.

Seneviratne et al. [38] analyzed the differences between free and

paid apps. They discovered that both free and paid apps collect

personal information. Moreover, the authors showed that 20 % of

the apps were connected to more than three trackers, and that 50 %

of users are exposed to 25 % trackers.

The analysis of the libraries history of the top apps on Google

Play Store is part of the work by Backes et al. [3]. Their results

showed that app developers slowly adapt new library versions,

exposing their end-users to large windows of vulnerability. Finally,

Mojica et al. [29] focused their attention on the impact of library

version changes on development effort. The results showed that

almost half of the apps underwent the ads library.

6 CONCLUSIONS AND FUTUREWORK

In this paper we conducted an empirical investigation on how mo-

bile developers perform updates of third-party libraries in their

code. We mined the evolution history of 291 open-source appli-

cations from the F-Droid repository to study the problem under

three different perspectives. Firstly, we studied whether mobile

developers perform external libraries version changes; secondly,

we identified which categories of used libraries developers are more

or less prone to update in their apps; thirdly, by means of an open

coding procedure, we extracted the common patterns followed

by mobile developers to update third-party libraries. Finally, we

investigated the distribution of such update patters in high- and

low-rated apps. The results indicate that:

(1) developers rarely update the used version of third-party

libraries in mobile apps, i.e., only 2 % of commits are related

to a version change;

(2) most version changes are usually an upgrade to a newer ver-

sion, however if an upgrade introduces an issue, a downgrade

is performed;

(3) the version of libraries related to graphical user interface or

support tools are more likely to be updated;

(4) most of the dependencies are never updated because of de-

velopers carelessness and high cost/benefit ratio;

(5) only 13 % of library uses are constantly updated by develop-

ers, while in the 2 % of the cases developers try to update

them without success;

(6) in 63 % of the cases the authors did not update the versions

of used libraries after their introduction;

(7) 89 % of diligent update patterns are done on high-rated apps,

while low-rated apps present 70 % of the updated ones pat-

terns.

These results have a number of implications for the research

community, tool vendors, and practitioners:

• More empirical research is needed. A key finding of our

study is related to the low frequency of third-party library up-

dates, likely dictated by developers carelessness. This recalls

the need for empirical studies able to show the (negative)

impact of missing updates on functional and non-functional

properties of the source code, so that developers may acquire

knowledge on the topic and be more aware of the possible

consequences that the choice of non-updating libraries has.

Similarly, further research is needed to investigate the causal-

ity of the relation between libraries updates and ratings as-

signed by end users.

• Enabling automatic support. One of the main challenges

that both researchers and tool vendors should face is con-

cerned with providing automatic support for third-party

library updates. This includes the creation of auto-update

systems or notification mechanisms allowing developers to

know about the existence of a new version of a library.

• Prioritizing update effort. Our findings seem suggesting

that a high cost/benefit ratio discourage developers in updat-

ing third-party libraries. Thus, devising methodologies and

tools able to properly capture how complex an update will

be might help developers in the decision making process,

ranking the update opportunities accordingly.

• Predicting trends and impact on source code.We were

able to discover specific trends in the way developers update

third-party libraries. As each of them has its own peculiari-

ties, researchers might exploit this information in order to

create predictionmodels able to preventively alert developers

of the potential impact of missing updates on non-functional

attributes of source code.

These findings and implications represent the main input for our

future research agenda, mainly focused on designing and develop-

ing new techniques and tools able to automatically identify chances

of version change, and apply them flawlessly. Moreover, we plan to

extend the empirical study to proprietary and larger applications,

with a particular focus on the relationship between user ratings

and third-party library updates. Finally, we plan to investigate the

impact of the developers’ behavior looking in particular at security

vulnerabilities, as already done in the traditional context [18].

264

Do Developers Update Third-Party Libraries in Mobile Apps? ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

REFERENCES
[1] Jean-Yves Antoine, Jeanne Villaneau, and A. Lefeuvre. 2014. Weighted Krippen-

dorff’s Alpha Is a More Reliable Metrics for Multi-Coders Ordinal Annotations:
Experimental Studies on Emotion, Opinion and Coreference Annotation. In Eu-
ropean Chapter of the Association for Computational Linguistics (EACL). 550–559.

[2] Shams Abubakar Azad. 2015. Empirical Studies of Android API Usage: Suggesting
Related API Calls and Detecting License Violations. Ph.D. Dissertation. Concordia
University.

[3] Michael Backes, Sven Bugiel, and Erik Derr. 2016. Reliable Third-Party Library De-
tection in Android and Its Security Applications. In ACM Conference on Computer
and Communications Security (CCS). 356–367.

[4] Veronika Bauer, Lars Heinemann, and Florian Deissenboeck. 2012. A Structured
Approach to Assess Third-Party Library Usage. In IEEE International Conference
on Software Maintenance (ICSM). 483–492.

[5] Gabriele Bavota, Mario Linares-Vasquez, Carlos Eduardo Bernal-Cardenas, Mas-
similiano Di Penta, Rocco Oliveto, and Denys Poshyvanyk. 2015. The Impact of
API Change- and Fault-Proneness on the User Ratings of Android Apps. IEEE
Transactions on Software Engineering 41, 4 (2015), 384–407.

[6] Sue Black. 2001. Computing Ripple Effect for Software Maintenance. Journal of
Software Maintenance 13, 4 (Sept. 2001), 263–279.

[7] Hudson S. Borges and Marco Tulio Valente. 2015. Mining Usage Patterns for the
Android API. PeerJ Computer Science 1 (2015), e12.

[8] Ning Chen, Jialiu Lin, Steven CH Hoi, Xiaokui Xiao, and Boshen Zhang. 2014. AR-
Miner: Mining Informative Reviews for Developers fromMobile AppMarketplace.
In IEEE/ACM International Conference on Software Engineering (ICSE). 767–778.

[9] Matthew L Dering and Patrick McDaniel. 2014. Android Market Reconstruction
and Analysis. In IEEE Military Communications Conference (MILCOM). 300–305.

[10] Dario Di Nucci, Fabio Palomba, Antonio Prota, Annibale Panichella, Andy Zaid-
man, and Andrea De Lucia. 2017. Software-Based Energy Profiling of Android
Apps: Simple, Efficient and Reliable?. In IEEE International Conference on Software
Analysis, Evolution, and Reengineering (SANER). 103–114.

[11] DannyDig and Ralph Johnson. 2006. HowDoAPIs Evolve? A Story of Refactoring.
Journal of Software Maintenance and Evolution: Research and Practice 18, 2 (2006),
83–107.

[12] Bin Fu, Jialiu Lin, Lei Li, Christos Faloutsos, Jason Hong, and Norman Sadeh.
2013. Why People Hate Your App: Making Sense of User Feedback in a Mobile
App Store. In ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD). 1276–1284.

[13] Frederick M. Haney. 1972. Module Connection Analysis: A Tool for Scheduling
Software Debugging Activities. In Fall Joint Computer Conference. 173–179.

[14] Daqing Hou and Xiaojia Yao. 2011. Exploring the Intent Behind Api Evolution:
A Case Study. InWorking Conference on Reverse Engineering (WCRE). 131–140.

[15] Mona Erfani Joorabchi, Ali Mesbah, and Philippe Kruchten. 2013. Real Challenges
in Mobile App Development. In ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM). 15–24.

[16] Hammad Khalid, Emad Shihab, Meiyappan Nagappan, and Ahmed E Hassan.
2015. What Do Mobile App Users Complain About? IEEE Software 32, 3 (2015),
70–77.

[17] Klaus Krippendorff. 2004. Content Analysis: An Introduction to Its Methodology (2
ed.). Sage Publications.

[18] Raula Gaikovina Kula, Daniel M German, Ali Ouni, Takashi Ishio, and Katsuro
Inoue. 2017. Do Developers Update Their Library Dependencies? Empirical
Software Engineering (2017), 1–34.

[19] Ralf Lämmel, Ekaterina Pek, and Jürgen Starek. 2011. Large-Scale, AST-Based
API-Usage Analysis of Open-Source Java Projects. In ACM/SIGAPP Symposium
on Applied Computing (SAC). 1317–1324.

[20] M. M. Lehman and L. A. Belady (Eds.). 1985. Program Evolution: Processes of
Software Change. Academic Press Professional.

[21] Mario Linares-Vásquez. 2014. Supporting Evolution and Maintenance of Android
Apps. In Doctoral Symposium of IEEE/ACM International Conference on Software
Engineering (ICSE). 714–717.

[22] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Massimiliano
Di Penta, Rocco Oliveto, and Denys Poshyvanyk. 2013. API Change and Fault
Proneness: A Threat to the Success of Android Apps. In ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE). 477–487.

[23] Mario Linares-Vásquez, Andrew Holtzhauer, Carlos Bernal-Cárdenas, and Denys
Poshyvanyk. 2014. Revisiting Android Reuse Studies in the Context of Code

Obfuscation and Library Usages. In IEEE Working Conference on Mining Software
Repositories (MSR). 242–251.

[24] William Martin, Federica Sarro, Yue Jia, Yuanyuan Zhang, and Mark Harman.
2017. A Survey of App Store Analysis for Software Engineering. IEEE Transactions
on Software Engineering 43, 9 (2017), 817–847.

[25] Yana Momchilova Mileva, Valentin Dallmeier, Martin Burger, and Andreas Zeller.
2009. Mining Trends of Library Usage. In International Workshop on Principles of
Software Evolution and Annual Workshop on Software Evolution (IWPSE/EVOL).
57–62.

[26] Roberto Minelli and Michele Lanza. 2013. SAMOA: A Visual Software Analytics
Platform for Mobile Applications. In IEEE International Conference on Software
Maintenance (ICSM). 476–479.

[27] Roberto Minelli and Michele Lanza. 2013. Software Analytics for Mobile Appli-
cations: Insights & Lessons Learned. In European Conference on Software Mainte-
nance and Reengineering (CSMR). 144–153.

[28] Israel J. Mojica Ruiz, BramAdams,MeiyappanNagappan, SteffenDienst, Thorsten
Berger, and Ahmed E. Hassan. 2014. A Large-Scale Empirical Study on Software
Reuse in Mobile Apps. IEEE software 31, 2 (2014), 78–86.

[29] Israel J. Mojica Ruiz,MeiyappanNagappan, BramAdams, Thorsten Berger, Steffen
Dienst, and Ahmed E. Hassan. 2016. Analyzing Ad Library Updates in Android
Apps. IEEE Software 33, 2 (2016), 74–80.

[30] Israel J. Mojica Ruiz, Meiyappan Nagappan, Bram Adams, and Ahmed E. Has-
san. 2012. Understanding Reuse in the Android Market. In IEEE International
Conference on Program Comprehension (ICPC). 113–122.

[31] J. E. Montandon, H. Borges, D. Felix, and M. T. Valente. 2013. Documenting
APIs with Examples: Lessons Learned with the APIMiner Platform. InWorking
Conference on Reverse Engineering (WCRE). 401–408.

[32] Maleknaz Nayebi, Bram Adams, and Guenther Ruhe. 2016. Release Practices
for Mobile Apps - What Do Users and Developers Think?. In IEEE International
Conference on Software Analysis, Evolution, and Reengineering (SANER). 552–562.

[33] D. Pagano and W. Maalej. 2013. User Feedback in the Appstore: An Empirical
Study. In IEEE International Requirements Engineering Conference (RE). 125–134.

[34] Fabio Palomba, Pasquale Salza, Adelina Ciurumelea, Sebastiano Panichella, Har-
ald Gall, Filomena Ferrucci, and Andrea De Lucia. 2017. Recommending and
Localizing Change Requests forMobile Apps Based onUser Reviews. In IEEE/ACM
International Conference on Software Engineering (ICSE). 106–117.

[35] Steven Raemaekers, Arie vanDeursen, and Joost Visser. 2012. Measuring Software
Library Stability Through Historical Version Analysis. In IEEE International
Conference on Software Maintenance (ICSM). 378–387.

[36] Romain Robbes, Mircea Lungu, and David Röthlisberger. 2012. How Do Devel-
opers React to API Deprecation? The Case of a Smalltalk Ecosystem. In ACM
SIGSOFT International Symposium on the Foundations of Software Engineering
(FSE). 56.

[37] Pasquale Salza, Fabio Palomba, Dario Di Nucci, Cosmo D’Uva, Andrea De Lucia,
and Filomena Ferrucci. 2018. Do Developers Update Third-Party Libraries in
Mobile Apps? - Appendix. (2018). https://doi.org/10.6084/m9.figshare.6025040.

[38] Suranga Seneviratne, Harini Kolamunna, and Aruna Seneviratne. 2015. A Mea-
surement Study of Tracking in Paid Mobile Applications. In ACM Conference on
Security & Privacy in Wireless and Mobile Networks (WiSec). 7.

[39] Ian Sommerville. 2006. Software Engineering. Addison-Wesley.
[40] Mark D Syer, Meiyappan Nagappan, Ahmed E. Hassan, and Bram Adams. 2013.

Revisiting Prior Empirical Findings for Mobile Apps: An Empirical Case Study
on the 15 Most Popular Open-Source Android Apps. In Conference of the Center
for Advanced Studies on Collaborative Research (CASCON). 283–297.

[41] Yuan Tian, Meiyappan Nagappan, David Lo, and Ahmed E Hassan. 2015. What
Are the Characteristics of High-Rated Apps? A Case Study on Free Android Appli-
cations. In IEEE International Conference on Software Maintenance and Evolution
(ICSME). 301–310.

[42] Nicolas Viennot, Edward Garcia, and Jason Nieh. 2014. A Measurement Study
of Google Play. ACM SIGMETRICS Performance Evaluation Review 42 (2014),
221–233.

[43] S. S. Yau, J. S. Collofello, and T. M. MacGregor. 1993. Ripple Effect Analysis of
SoftwareMaintenance. In Software EngineeringMetrics I: Measures and Validations,
Martin Shepperd (Ed.). 71–82.

[44] Jack Zhang, Shikhar Sagar, and Emad Shihab. 2013. The Evolution of Mobile
Apps: An Exploratory Study. In International Workshop on Software Development
Lifecycle for Mobile (DeMobile). 1–8.

265

