
Effectiveness and Challenges in Generating
Concurrent Tests for Thread-Safe Classes
Valerio Terragni

USI Università della Svizzera italiana, Switzerland
valerio.terragni@usi.ch

Mauro Pezzè
USI Università della Svizzera italiana, Switzerland

University of Milano-Bicocca, Italy
mauro.pezze@usi.ch

ABSTRACT

Developing correct and efficient concurrent programs is difficult
and error-prone, due to the complexity of thread synchronization.
Often, developers alleviate such problem by relying on thread-safe
classes, which encapsulate most synchronization-related challenges.
Thus, testing such classes is crucial to ensure the reliability of the
concurrency aspects of programs. Some recent techniques and cor-
responding tools tackle the problem of testing thread-safe classes by
automatically generating concurrent tests. In this paper, we present
a comprehensive study of the state-of-the-art techniques and an
independent empirical evaluation of the publicly available tools.
We conducted the study by executing all tools on the JaConTeBe
benchmark that contains 47 well-documented concurrency faults.
Our results show that 8 out of 47 faults (17%) were detected by at
least one tool. By studying the issues of the tools and the generated
tests, we derive insights to guide future research on improving the
effectiveness of automated concurrent test generation.

CCS CONCEPTS

• Software and its engineering → Concurrent program-

ming languages; Software testing and debugging;

KEYWORDS

Test generation, Concurrency faults, Thread-safety

ACM Reference Format:

Valerio Terragni and Mauro Pezzè. 2018. Effectiveness and Challenges in
Generating Concurrent Tests for Thread-Safe Classes. In Proceedings of
the 2018 33rd ACM/IEEE International Conference on Automated Software
Engineering (ASE ’18), September 3–7, 2018, Montpellier, France. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3238147.3238224

1 INTRODUCTION

Concurrent programming is pervasive across application do-
mains due to the widespread of multi-core chip technology. De-
veloping correct and efficient concurrent programs is hard due to
the complexity of thread synchronization that suffers from under-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’18, September 3–7, 2018, Montpellier, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5937-5/18/09. . . $15.00
https://doi.org/10.1145/3238147.3238224

and over-synchronization problems. Under-synchronization intro-
duces subtle concurrency faults, like data races and atomicity vio-
lations, that are difficult to expose at testing time since they man-
ifest under specific non-deterministic thread interleavings. Over-
synchronization causes deadlocks and affects performance by in-
troducing overhead and reducing parallelism [36, 42].

Often developers reduce the complexity of developing reliable
concurrent programs in object-oriented shared-memory languages,
for instance Java and C++, by relying on thread-safe classes [22],
which address the important challenge of synchronizing concurrent
memory accesses in a correct and efficient way [42]. By delegat-
ing the burden of thread synchronization to thread-safe classes,
developers can use the same instance of such classes from multiple
threads without additional synchronization [22], thus relying on the
correctness of thread-safe classes to avoid concurrency failures [36].
Ensuring the correctness of thread-safe classes is important. It iden-
tifies concurrency faults in the implementation of the thread-safe
classes, and thus in the programs that rely on them.

An effective approach to validate the correctness of thread-safe
classes consists in automatically generating concurrent unit tests,
and checking if the generated tests trigger fault-revealing thread in-
terleavings, by relying on one of the many interleaving exploration
techniques [10, 17, 51, 60]. A concurrent unit test, concurrent test
hereafter, consists of multiple concurrently executing threads that
exercise the public interface of a class under test. Figure 2 shows
an example of concurrent test that triggers a concurrency fault in
the thread-safe class AppenderAttachableImpl of the Log4J library,
shown in Figure 1.

In recent years, researches have proposed techniques for auto-
matically generating concurrent tests [12, 35, 40, 45, 48–50, 57, 59],
inspired by recent advances in sequential unit test generation [20,
37]. Generating concurrent tests faces new challenges that are
not present when generating sequential tests, like multi-threading,
non-determinism, shared states, and huge spaces of thread inter-
leavings [12, 59].

Current generators of concurrent tests address the new chal-
lenges with different approaches, for which there is no clear ev-
idence of their effectiveness and limitations yet. Although, the
authors of these approaches have performed experiments to evalu-
ate and compare them [12, 59], such experiments are too narrow in
the criteria to select subjects and also in the analysis of the results to
provide solid evidence of effectiveness and limitations. To address
this gap, this paper reports an empirical study of the six currently
openly-accessible concurrent test generators for thread-safe classes.
The goal of the study is to (i) assess the effectiveness of the tech-
niques in generating fault-revealing tests, (ii) identify and better
understand their limitations, and (iii) shed light on future research

https://doi.org/10.1145/3238147.3238224
https://doi.org/10.1145/3238147.3238224

ASE ’18, September 3–7, 2018, Montpellier, France Valerio Terragni and Mauro Pezzè

1 /** faulty AppenderAttachableImpl class - Log4j v. 1.2.17
2 https://bz.apache.org/bugzilla/show_bug.cgi?id=54325 **/
3 public void removeAllAppenders() {
4
5 if(appenderList != null) {
6 int len = appenderList.size();
7 for(int i = 0; i < len; i++) {
8 Appender a = (Appender) appenderList.elementAt(i);
9 a.close();
10 }
11 appenderList.removeAllElements();
12 appenderList = null;
13 }
14 }

Figure 1: Code related to the Log4j concurrency bug 54325.

directions identifying ways in which existing techniques can be
improved or new techniques be defined. In our study, we refer to
the recent JaConTeBe benchmark of concurrency faults in thread-
safe classes, published in ASE 2015, a repository of 47 concurrency
faults experienced in the field [31]. We would like to notice that
we selected the benchmark independently from the studied tools,
to avoid biases in selecting the subjects. Our results indicate that
only 17% of the faults can be detected by at least one of the genera-
tors of concurrent tests evaluated in this paper. This indicates both
an impressive effectiveness and a large space for improvements.
We analyzed the results of both the automatically-generated and
the JaConTeBe test suites, and examined the characteristics of
both detected and undetected faults to study the effectiveness and
limitations of the concurrent test generators. We identified three
main issues that prevent them from generating fault-revealing tests,
and we observed that the issues are shared among the different
techniques. We devise future research directions to address these
problems and increase the overall effectiveness of concurrent test
generation. To ease reproducibility, our experimental data are avail-
able in our website [1].

In summary, this paper contributes to the state-of-the-art by
presenting:

• A survey on the existing techniques for generating concur-
rent unit tests for thread-safe classes;

• A large-scale experimental and comparative evaluation of
the six generators of concurrent tests for Java thread-safe
classes conducted on the JaConTeBe benchmark [31], which
includes 47 concurrency faults;

• An analysis of the effectiveness of these six techniques in
detecting concurrency faults;

• A discussion of a set of insights that we gained from the
study, and that give some guidelines for future research in
this area;

2 GENERATING CONCURRENT TESTS

This section presents the preliminaries and background of test
generation for exposing concurrency faults in thread-safe classes, in
the context of concurrent object-oriented programs that implement
the shared-memory programming paradigm.

A concurrent shared-memory object-oriented program is com-
posed of a set of classes, each composed of a set of methods and
fields that can be executed and accessed concurrently by multiple
threads, respectively. A class is thread-safe if it encapsulates syn-
chronization mechanisms that prevent incorrect accesses to the
class from multiple threads [22]. A class is thread-unsafe otherwise.

1 // Sequential Prefix
2 AppenderAttachableImpl var0 = new AppenderAttachableImpl();
3 ConsoleAppender var1 = new ConsoleAppender();
4 var0.addAppender((Appender) var1);
5
6 new Thread(new Runnable() {
7 public void run() {
8 var0.removeAllAppenders(); // Suffix 1
9 }}).start();
10
11 new Thread(new Runnable() {
12 public void run() {
13 var0.removeAllAppenders(); // Suffix 2
14 }}).start();

Figure 2: Concurrent test that exposes the bug in Figure 1.

Example of synchronization mechanisms are synchronized blocks
in Java, and locks, mutexes and semaphores in C. Thread-safety
guarantees that the same instance of a thread-safe class can be
correctly accessed by multiple threads without additional synchro-
nization other than the one implemented in the class [40].

Writing correct, efficient and reliable thread-safe classes is hard,
due to the non-deterministic order of memory accesses across
threads, which can lead to thread-safety violations, that is, deviations
from the expected behavior of the class when concurrently accessed.
A key characteristic of such violations is that they manifest non-
deterministically, due to the non-determinism of the scheduler that
determines the execution order of threads. The order of accesses to
shared memory locations is fixed within one thread, but can vary
across threads. An interleaving is a total order relation of shared
memory accesses among threads [32]. Concurrent executions can
manifest many different interleavings, and only some –usually few–
of them expose thread-safety violations [38].

As an example of thread-safety violation, Figure 1 shows the code
snippet of class AppenderAttachableImpl of the Log4j library, part
of the JaConTeBe benchmark [31]. Method removeAllAppenders

checks whether the object instance field appenderList is initialized
(line 5) before dereferencing it (line 6), and setting the reference to
null (line 12). These accesses are not properly synchronized: two
threads that concurrently invoke removeAllAppenders may cause a
NullPointerException both in a specific program state and with a
particular thread interleaving (line 6). In a thread interleaving that
triggers the exception, a thread t1 executes line 12 after a thread t2
executed line 5 and before t2 executes line 6.

An effective approach for validating the correctness of thread-
safe classes is the automated generation of concurrent tests. Figure 3
shows a logical architecture of such approach, which is shared
among all the surveyed techniques.

In a nutshell, given a class under test and, optionally, a set of
auxiliary classes that the class under test depends on, the techniques
automatically exposes thread-safety violations in four consecutive
steps: (i) they generate sequential (single-threaded) method call
sequences that exercise the public interface of the class under test,
(ii) assemble such sequences in a concurrent test that executes
concurrently the method call sequences from multiple threads,
(iii) explore the interleaving space of the generated concurrent tests
by means of state-of-the-art interleaving explorers, (iv) check if
any of the explored interleavings exposes a thread-safety violation.
Figure 2 shows an example of a concurrent test that can reveal the
fault-revealing interleaving described above. In this paper, we refer
to the general definition of concurrent test presented in the seminal
paper of Pradel and Gross [40].

Effectiveness and Challenges in Generating Concurrent Tests for Thread-Safe Classes ASE ’18, September 3–7, 2018, Montpellier, France

Class
Under Test

Auxiliary
Classes

Input

Thread
Interleavings

Output

Thread 2Thread 1Call Sequence
Generator

Call Sequences
Assembler

Interleaving
Explorer

Concurrent Test

Method Call
Sequences

S1,S2, S3…

S1

S2 S3

Thread-safety
Oracle

Thread-safety
Violations

Concurrent Test Generation Interleaving Exploration

Step 1 Step 4Step 2 Step 3

Figure 3: Logical architecture of concurrent test generation.

A concurrent test is a set of method call sequences, where each
call in a sequence consists of a method signature, a possibly empty
list of input variables (method parameters), and an optional output
variable (method return value). In an instance method call, the first
input variable is the object that receives the call, for example, var0
in the call at line 8 Figure 2. A test consists of a prefix and a set
of suffixes. A prefix is a call sequence to be executed in a single
thread that instantiates the class under test, to create the object
instances that will be accessed concurrently from multiple threads.
A prefix may need to invoke additional methods to bring an ob-
ject instance into a particular state that may enable the suffixes
to trigger a thread-safety violation. For instance, the method call
var0.addAppender((Appender) var1); at line 4 in Figure 2 instan-
tiates the shared object field appenderList, in order to satisfy the
condition of the if statement at line 5 in Figure 1, during the execu-
tion of the concurrent suffixes, to trigger a NullPointerException

when executing the statement at line 6. A suffix is a call sequence
to be executed concurrently with other suffixes, after executing
the common prefix. All suffixes share the object instances created
by the prefix, and can use them as input variables for suffix calls,
to invoke methods that access the shared instances concurrently.
For example, all the suffixes in Figure 2 use the same shared object
instance var0 of the class under test as an object receiver.

3 STATE-OF-THE-ART GENERATORS OF

CONCURRENT TESTS

For a complete survey of the main techniques to generate con-
current tests, we identified a list of relevant papers, by querying
scholarly web engines (Google Scholar, ACM and IEEE Digital Li-
braries) with the query: test generation + concurrency, and refined
the list, by ignoring the papers unrelated to concurrent test gener-
ation and concurrency fault detection. We discarded papers that
present techniques for generating sequential tests [20, 37, 62], for
generating concurrent tests to expose performance issues [42], in-
correct substitutability faults [41], or for reproducing concurrency
failures from crash stacks [7], which are outside the focus of this
study. We discarded techniques presented only in short workshop
papers [52, 53]. We excluded techniques that generate test inputs
for concurrent programs, notably techniques that use concolic ex-
ecution or symbolic analysis [16, 24, 44], since these techniques
generates only inputs and not concurrent tests, as the one shown
in Figure 2.

Table 1 summarizes the nine relevant techniques that we identi-
fied in our study. The table indicates the name of the tool, the main
reference, the venue and year of publication, and the category of
the technique, according to the taxonomy of Choudhary et al.’, who
classify concurrent test generators as random-based, coverage-based
and sequential-test-based [12].

Table 1: State-of-the-art Generators of Concurrent Tests

Tool name Reference Venue Year Category

Ballerina [35] ICSE 2012 random-basedConTeGe [40] PLDI 2012

ConSuite [57] ICST 2013
coverage-basedAutoConTest [59] ICSE 2016

CovCon [12] ICSE 2017

Omen [45–47] FSE 2014
sequential-test

based
Narada [49] PLDI 2015
Intruder [48] FSE 2015
Minion [50] OOPSLA 2016

In Sections 3.1, 3.2 and 3.3, we overview the test generation tech-
niques, grouped per category, corresponding to Steps 1 and 2 in
Figure 3. In Section 3.4, we discuss the interleaving explorers and
thread-safety oracles used by the different techniques, correspond-
ing to Step 3 and 4 in Figure 3.

3.1 Random-Based Techniques

The pioneer random-based techniques are Ballerina [35] and
ConTeGe [40], which generate concurrent tests by randomly com-
bining randomly generated method call sequences with random
input parameters. Both Ballerina and ConTeGe rely on existing
interleaving explorers and use linearizability [26] as test oracle.
Linearizability reports a violation whenever a thread interleaving
produces a behavior that cannot be produced in any linearized test
execution where all methods are execute atomically (sequentially).

Ballerina ICSE 2012 [35]. Nistor et al. identify as a major
challenge of concurrent test generation the high computational cost
of exploring the interleaving spaces of the generated tests, which
size grows factorially with the number of shared memory accesses
executed by the concurrent suffixes [32]. Ballerina addresses this
challenge by confining each concurrent suffix to a single method
call, limiting the test to a single shared object under test, and gener-
ating tests with exactly two concurrent threads. Ballerina clusters
oracle violations to reduce the cost of inspecting them: oracle vio-
lations belonging to the same cluster are likely to be either all false
alarms or all true errors [35].

ConTeGe PLDI 2012 [40]. ConTeGe addresses the same chal-
lenges of Ballerina, with a novel linearizability checker that im-
proves efficiency and reduces false alarms over Ballerina [9].

Pros: Random-based techniques can efficiently generate con-
current tests, since they do not require complex analysis; they can
generate thousands of concurrent tests in few seconds [12], and
can effectively expose easy-to-find concurrency faults [35], whose
manifestation does not depend on a particular program state.

Cons: Random-based techniques are less effective in revealing
hard-to-find concurrency faults, because randomly generated tests
tend to repetitively test similar program behaviors [12]. We need to
randomly generate thousands or even millions of concurrent tests

ASE ’18, September 3–7, 2018, Montpellier, France Valerio Terragni and Mauro Pezzè

to effectively detect hard-to-find faults, due to the low probability
of randomly generating a failure-inducing test [40]. For example,
ConTeGe requires more than a million tests to expose a single
concurrency fault [40]. This is an issue, because of the high com-
putational cost of exploring the interleaving space of all generated
tests. In practice, we can explore only the interleaving space of few
tests within an affordable time budget [12, 35, 59].

3.2 Coverage-Based Techniques

Coverage-based techniques address the limitations of random-
based techniques by driving the generation of concurrent tests
with interleaving coverage criteria [12, 57, 59]. These techniques
identify and prune concurrent tests that lead to redundant behav-
iors (thread interleavings) to steer test generation towards new
program behaviors, thus avoiding the high cost of exploring the
interleaving spaces of redundant tests. A major challenge faced by
coverage-based techniques is the high cost of computing the precise
executable domain of interleaving coverage criteria for concurrent
programs [43, 55, 59]. To address this challenge coverage-based
techniques rely on coverage criteria that are efficient to compute,
at the cost of approximating the coverage of thread interleavings.

ConSuite ICST 2013 [57]. The seminal coverage-based concur-
rent test generation approach, ConSuite, extends Evosuite [20]
to generate concurrent tests. ConSuite statically estimates the
coverage requirements as a set of thread interleavings, and selects
candidate concurrent tests for covering uncovered interleavings,
by checking if the sequential executions of the suffixes of the tests
cover the memory accesses that comprise the target interleaving.
ConSuite does not consider the execution context of shared mem-
ory accesses, and thus ignores concurrency faults that manifest
failure-inducing interleavings only under specific execution con-
texts. Moreover, even if the concurrent suffixes cover the target
shared-memory accesses when executed sequentially, there is no
guarantee that the suffixes execute the accesses in the specific or-
der prescribed by the interleaving coverage target, when executed
concurrently.

AutoConTest ICSE 2016 [59]. AutoConTest improves over
ConSuite by introducing a context-sensitivity coverage metric
that can be efficiently computed, as it analyses sequential execu-
tions, and that includes synchronization sensitive (lock acquisitions
and releases) and calling context information. AutoConTest over-
comes the limitations of computing an approximated set of coverage
requirements statically (prior testing), by generating concurrent
tests iteratively, so that each test increases the coverage based on
the coverage data that are collected during the test generation.

CovCon ICSE 2017 [12]. CovCon exploits the concept of con-
current method pairs, proposed by Deng et al. [14], that is, the set
of pairs of methods that execute concurrently [14]. CovCon mea-
sures the frequency of concurrent executions of pairs of methods,
to focus the test generation on infrequently or not at all covered
pairs [12].

Pros: Coverage-based techniques limit redundant tests, thus
reducing the number of generated tests, and consequently the inter-
leaving exploration costs, as in principle only the tests that increase
interleaving coverage will be analyzed by the (computationally
expensive) interleaving explorer.

Cons: The effectiveness of coverage-based techniques depends
on the coverage criterion, which might either be too expensive
to compute or it might miss relevant coverage requirements. The
optimal trade-off between analysis computational cost and preci-
sion of the computed requirements is still unclear. For example, the
ConSuite coverage criterion likely misses coverage requirements
because of being both statically computed and specific to prede-
fined faulty interleaving patterns. AutoConTest efficiently learns
coverage requirements while generating method call sequences,
but can miss coverage requirements if specific input parameters are
needed to observe new coverage requirements. The CovCon cover-
age criterion is computed efficiently at method level, but does not
capture the many interleaving coverage requirements that involve
the shared memory accesses triggered by the methods.

3.3 Sequential-Test-Based Techniques

The sequential-test-based techniques proposed by Samak et al.
apply the same overall approach to different kinds of concurrency
faults [46, 48–50]: Omen targets deadlocks, Narada data races,
Intruder atomicity violations, and Minion assertion violations.
They analyse concurrent programs starting from a suite of sequen-
tial (single-threaded) tests, which can be either manually-written
or generated by existing sequential test generators [20, 37]. They
analyze the execution traces obtained by executing the initial test
suites sequentially, to identify concurrency faults that may occur
when combining multiple sequential tests into concurrent tests. If
such faults are identified, these techniques generate concurrent
tests, which they analyze with interleaving explorers to check if
they indeed expose the fault during a concurrent execution.

Pros: Sequential-test-based techniques do not generate concur-
rent tests that are irrelevant with respect to the considered type of
concurrency fault.

Cons: Their effectiveness depends on the initial set of sequential
tests. The hypothesis that sequential tests executed concurrently
are always adequate to expose concurrency faults is not always
valid. Sequential tests do not refer to the concurrency structure:
manually written sequential tests are designed without considering
concurrency issues, while automatically generated sequential tests
are produced referring to sequential-based coverage criteria, for
example, branch coverage [20]. Moreover, each sequential-test-
based techniques imposes a relatively high computational cost [12].

3.4 Interleaving Explorers and Thread-Safety

Oracles

Generators of concurrent tests check if the generated tests expose
thread-safety violations (Step 3 and 4 in Figure 3) by adopting
different interleaving explorers and thread-safety oracles, which
come with different computational costs, present diverse proneness
to false positives, and target different types of faults (data races,
atomicity violations) and related failure types (exceptions, endless
hang, and logical issues).

Table 2 summarizes the main interleaving explorers: selective,
random and exhaustive techniques. Selective techniques limit the
interleaving space exploration of the generated tests to interleav-
ings that match predefined patterns of concurrency faults, like data

Effectiveness and Challenges in Generating Concurrent Tests for Thread-Safe Classes ASE ’18, September 3–7, 2018, Montpellier, France

Table 2: Interleaving Explorers and Thread-safety Oracles

Interleaving Implicit Oracle Internal Oracle

Explorer (exceptions, endless hang) (data races, atomicity violations)

Random ConTeGe, CovCon Narada
Selective Omen AutoConTest, Intruder
Exhaustive Ballerina

races and atomicity violations [30, 38]. Random techniques ran-
domly explore the space of possible thread interleavings, while
exhaustive techniques exhaustively explore all non-redundant inter-
leavings [25, 34, 63]. Redundant interleavings are often identified
with partial order reduction techniques [18]. Both random and sys-
tematic techniques do not restrict the interleavings to be explored,
and therefore are not specific to any particular kind of concurrency
faults, thus differing from selective techniques. Both random and
exhaustive techniques hardly scale to concurrent tests with huge
interleaving spaces, since exhaustive techniques are computation-
ally expensive, and random techniques have a low probability of
detecting concurrency faults [38]. In contrast, selective techniques
are more efficient, because they focus on a small portion of the inter-
leaving space [38]. ConTeGe, CovCon and Narada rely on random
interleaving explorers. Ballerina relies on two different exhaus-
tive interleaving explorers. AutoConTest, Omen and Intruder
rely on selective techniques, AssetFuzzer [30], iGoodLock [28],
and CTrigger [38], respectively.

Thread safety oracles are either implicit or internal. Implicit ora-
cles report a concurrency fault if an explored thread-interleaving
manifests an “obvious” and visible oracle violation like runtime
exceptions or endless hangs [4]. Implicit oracles cannot detect faults
that manifest as logical errors (wrong output). Internal oracles de-
tect faults by monitoring the internal program states. For example,
they report an oracle violation if an explored thread interleaving
matches a predefined pattern of concurrency faults [67], regardless
of observing a runtime exception or an endless hang. Thus, internal
oracles can both fail to detect the presence of faults (false nega-
tives), and signal the presence of anomalies that are not faults (false
positives) [67]. ConTeGe, CovCon, Omen and Ballerina rely on
implicit oracles, while the other techniques on internal oracles.

Generating tests and exploring interleaving are two orthogonal
problems. As such, in principle, the tests generated whit any test
generator could be analyzed by any interleaving explorer [12, 35,
40]. In practice, this is not always the case. For example, AutoCon-
Test generates concurrent tests with tens of method calls in the
concurrent suffixes. This may be incompatible with both exhaustive
and random interleaving explorer, since exhaustive explorationmay
become too expensive, while random exploration may be ineffective
as the probability of triggering faulty-interleavings decreases with
the increase of test length [38].

4 EXPERIMENTS

In this section, we describe the experiments that we designed
to evaluate and compare the six openly-accessible state-of-the-
art concurrent test generators that we selected as a result of our
analysis of the literature. The goal of the experiments is to evaluate
and compare how effectively and efficiently these generators find
concurrency faults.

Table 3: JaConTeBe Benchmark [31]

Code base (label) # Subjects Description

Apache DBCP (dbcp) 4 Database connection pool
Apache Derby (derby) 5 Relational database
Apache Groovy (groovy) 6 Dynamic language for JVM
OpenJDK (jdk) 20 Java Development Kit
Apache Log4j (log4j) 5 Logging library
Apache Lucene (lucene) 2 Search library
Apache Pool (pool) 5 Object-pooling API

4.1 Tool Selection

We experimented with all state-of-the-art techniques for which
there exists a publicly available tool: ConTeGe, CovCon, Auto-
ConTest, Omen, Narada and Intruder. We were not able to
experiment with Ballerina, ConSuite and Minion because the
tools were not publicly available at the time of conducting the ex-
periments.1 The empirical comparison of the tools is facilitated by
the fact that all tools generate tests for programs written in Java.

We experimented ConTeGe and CovCon both with the default
configuration that uses stress testing as interleaving explorer and
with the configuration that uses the exhaustive interleaving explorer
JPF [25]. Such configuration is supported by both tools, and we
indicate the variants of ConTeGe and CovCon that rely on JPF as
ConTeGeJPF and CovConJPF, respectively.

4.2 Subject Selection

The criteria for selecting subjects play a crucial role in evalu-
ating and comparing testing techniques [5, 21, 65]. Most of the
experiments reported in the surveyed papers refer to previously
published papers as a basis for selecting subjects. In their seminal
papers, both Pradel and Nistor propose an interesting set of experi-
ments, but do not discuss the criteria for selecting the experimental
subjects [35, 40]. In the context of sequential test generation, Fraser
and Arcuri argue that “if the subject selection is unclear, in principle
it could mean that the presented set of classes represents the entire
set of classes on which the particular tool was ever tried, but it could
also mean it is a subset on which the technique performs particularly
well”, and suggest to randomly sample open-source code reposito-
ries in order to avoid biases [21]. Fraser and Arcuri’s approach is
suitable to evaluate test generator techniques with respect to cov-
erage, since this does not require that the selected subjects contain
concurrency faults. The approach is not well suited for evaluating
test generation techniques that aim to expose concurrency faults
quickly, without aiming to maximise coverage, like random-based
and sequential-test-based techniques. Our experiments aims to eval-
uate the different techniques referring to an unbiased benchmark,
that is a benchmark of thread-safe classes with documented concur-
rency faults selected without neither concurrent test generation nor
some specific techniques in mind. A benchmark that satisfies this re-
quirement is the JaConTeBe benchmark, recently proposed by Lin
et al. [31]. JaConTeBe is composed of 47 concurrency faults from
seven Java popular open source projects (see Table 3), and considers
a wide range of concurrency faults types: data races, atomicity vio-
lations, resource and wait-notify deadlocks. The readers can find
detailed description of the subjects in the original paper [31] and
1The Minion website (https://sites.google.com/site/miniontool/) is under construction
at the time of conducting the experiments

https://sites.google.com/site/miniontool/

ASE ’18, September 3–7, 2018, Montpellier, France Valerio Terragni and Mauro Pezzè

companion website [2], where the authors claim that JaConTeBe
is the most advisable benchmark for evaluating concurrency test-
ing techniques. Competing benchmarks are either composed of toy
concurrent programs (IBM benchmark suite [15]) or not specifically
designed for concurrency fault detection (JPG [56] and DaCapo [8]),
thus without documented concurrency faults.

For each of the 47 concurrency faults (subjects), the JaConTeBe
benchmark provides the following artifacts: (i) the binaries of the
code base’s buggy version; (ii) the link to the bug report; (iii) the
source code of a manually-written fault-revealing concurrent test;
JaConTeBe was built specifically to evaluate interleaving explo-
ration techniques (Step 3 and 4 in Figure 3), and thus it includes
fault-revealing concurrent tests. These characteristics make JaCon-
TeBe an excellent benchmark for our study, since our goal is to
assess the capability of test generators to synthesize concurrent
tests (Step 1 and 2 in Figure 3) that can expose the concurrency
faults that can be revealed with manually-written tests.

4.3 Subject and Tool Preparation

For each subject, we collected the inputs of the tools: the class
under test and the set of auxiliary classes (see Figure 3).We retrieved
the class under test by examining the bug report and the manually-
written test. As discussed in Section 2, the auxiliary classes are
those in which the class under test depends upon. For example, if a
method m of the class under test has a parameter of non-primitive
type A, then A is an auxiliary class. Most tools require auxiliary
classes as input to create objects of type A to be used as a parameter
for invoking m. We identified a proper set of auxiliary classes by
relying on the corresponding manually-written tests of JaConTeBe.
We set the auxiliary classes as all the classes of the program under
test (excluding the class under test itself) that have been referenced
to in the manually-written test.

While most of the evaluated tools accept binaries as an input,
CovCon needs the source code, because it instruments the source
code with an eclipse plug-in2. Therefore, we retrieved the relevant
source code from the corresponding code repositories, and we
confirmed that the JaConTeBe tests fail if executed on the source
code. We instrumented the source code of the class under test and
all of its superclasses3.

The sequential-test-based tools, Omen, Narada and Intruder,
require a set of sequential tests in input as they do not perform
Step 1 of Figure 3. We could obtain such tests by extracting human-
written sequential tests from public repositories, but it would be
unfair with respect to coverage-based and random-based techniques
that generate concurrent tests relying exclusively on automatically
generated codes. To avoid biases, we generated the tests with a
random-based generator of sequential tests, following the exper-
iments of Choudhary et al. [12]. We opted for Randoop [37], the
most popular tool of this type4. An important configuration choice
is the number of sequential tests for the three sequential-test based
tools. Too many tests could introduce overhead during the analysis
phase, while too few tests could be insufficient to find the fault.
We addressed this issue by iteratively alternating the execution of
2https://github.com/michaelpradel/ConTeGe/tree/CovCon
3Excluding java.lang.Object.
4We ran Randoop ignoring all tests that do not instantiate the CUT at least once by
including the option --include-if-classname-appears

Randoop and of the sequential-test based tools. At each iteration
we doubled the time budget t and the maximum number of tests k
of Randoop. We chose an initial value of t = 30 seconds and k = 50,
as a recent empirical study indicates that Randoop saturates code
coverage in less than 60 seconds [54].

4.4 Evaluation Setup

We executed the eight tools (six techniques and two alternative
configurations) with a time-budget of an hour for each of the 47
JaConTeBe subjects.We repeated the experiments ten times to cope
with the randomness of the choices of the tools while generating
tests and exploring interleaving spaces. The overall machine time
of the experiments was 156 days. We executed our experiment
on a server Ubuntu 16.04.2 with 64 octa-core CPUs Intel® Xeon®
E5-4650L @ 2.60 GHz and ∼529 GB of RAM.

We evaluated the effectiveness of the tools in terms of bug find-
ing capability, and their efficiency in terms of the time required to
detect the faults, which includes the time of both generating the
tests and exploring their interleaving spaces (Step 1 to 4 in Figure 3).
We did not use coverage as an evaluation criterion, since in the con-
text of concurrency testing the only pertinent coverage criteria are
those related to thread interleavings [32]. Computing the complete
set of dynamically covered interleavings for all the generated tests
would be too computationally expensive. Furthermore, instrument-
ing shared memory accesses to collect the covered interleavings
would introduce delays that could prevent the manifestation of the
fault-revealing interleavings. We do not compare the number of
tests generated by each technique, because it can be misleading,
since the length of method call sequences in a concurrent test can
vary a lot across techniques. For example, AutoConTest generates
long suffixes, while ConTeGe short ones. Moreover, sequential-test-
based tools do not report all the concurrent tests that they generate,
but only those that they deem as fault-revealing.

We manually analyzed the results of each run, to identify un-
successful and successful runs. We checked the relations of all
thread-safety violations reported by the tools with the concurrency
faults under analysis, by relying on both the bug report and the
manually-written concurrent test. It is important to clarify that
we do not require the automated-generated concurrent tests and
the corresponding manually-written tests to be identical, since of-
ten the same concurrency fault can be manifested with different
concurrent tests.

4.5 Results

Table 4 summarises the results of our experiments by providing
fault-finding and execution time data for all subjects. The first and
third columns present the category and the ID of each fault, respec-
tively, as defined by the curators of the JaConTeBe benchmark [31].
The second column indicates the type of failure that manifests the
fault when executing the manually-written test.

The subjects are ordered by the first and second columns. The
remaining columns show the results for each tool by indicating
four possible outcomes: (i) the tool detects the fault (✓) with the
number of successful runs that detected the fault, and the average
detection time of successful runs; (ii) the tool crashes (×); (iii) the
tool does not generate any test (•); (iv) the tool generates tests but

https://github.com/michaelpradel/ConTeGe/tree/CovCon

Effectiveness and Challenges in Generating Concurrent Tests for Thread-Safe Classes ASE ’18, September 3–7, 2018, Montpellier, France

Table 4: Summary of Fault-finding Results for Each Tool and JaConTeBe Fault

Fault Category Failure Type Fault ID ConTeGe ConTeGeJPF AutoConTest CovCon CovConJPF Omen Narada Intruder

inconsistent synch. endless loop dbcp4 − − × − − − − −
logic pool5 − − × − − − − −

race/atomicity
violations

endless loop groovy6 ✓(1/10) 231 sec. − × − − − − −

runtime
exception

dbcp3 − − × − − • • •
derby3 • • • • • • • •
groovy1 • • × • • − − −
groovy3 − − • − − − − −
groovy4 − − • − − − × ×
jdk6_3 − − ✓(10/10) 58 sec ✓(10/10) 54 sec ✓(7/10) 312 sec − − ✓(10/10) 307 sec
jdk6_4 ✓(8/10) 710 sec ✓(10/10) 59 sec × ✓(10/10) 75 sec ✓(2/10) 300 sec − × ×
jdk6_13 ✓(1/10) 2,617 sec ✓(3/10) 1,092 sec × ✓(6/10) 916 sec ✓(3/10) 1,549 sec − × ×
jdk7_3 − − − − − − −
log4j_3 ✓(10/10) 22 sec ✓(10/10) 15 sec ✓(10/10) 37 sec ✓ (10/10) 58 sec ✓ (10/10) 22 sec − − −
pool1 − − × − − − − −

logic

groovy5 − − − − − − × ×
jdk6_1 − − • − − • • •
jdk6_2 − − − − − − − −
jdk6_5 − − − − − − − −
jdk6_14 − − − − − − − −
jdk7_1 − − − − − − − −
jdk7_6 − − − − − − − −
log4j_1 − − × − − − ✓ (10/10) 35 sec. −

resource
deadlock endless hang

dbcp1 − − • − − • • •
dbcp2 − − • − − • • •
derby1 • • • • • • • •
derby2 • • • • • • • •
derby4 • • • • • • • •
derby5 − − − − − − − −
groovy2 − − − − − × × ×
jdk6_6 − − − − − − − −
jdk6_7 − − • ✓ (3/10) 17 sec. − • • •
jdk6_8 − − − − − − − −
jdk6_10 ✓ (2/10) 321 sec. − • ✓ (5/10) 69 sec. − • • •
jdk6_11 − − × − − − − −
jdk6_12 − − − − − − − −
jdk7_2 − − − − − − − −
jdk7_4 − − − − − − − −
log4j_2 − − − − − − − −

wait-notify
deadlock endless hang

jdk6_9 − − − − − − − −
jdk7_5 − − − − − − − −
log4j_4 − − − − − − − −
log4j_5 − − − − − − − −
lucene1 − − • − − − − −
lucene2 − − • − − − − −
pool2 − − − − − − − −
pool3 − − − − − − − −
pool4 − − − − − − − −

summary (# faults detected, average time) (5, 780 sec) (3, 388 sec) (2, 48 sec) (6, 198 sec) (4, 546 sec) (0, −) (1, 35 sec) (1, 307 sec)

does not detect the fault (−); The last row in Table 4 summarize
the results for each tool as number of detected faults and average
detection time.

As discussed in Section 3.4, the surveyed techniques rely on
different interleaving explorers and thread-safety oracles to detect
faults of specific categories and failure types. In Table 4, a gray
background indicates the faults that are not detectable with some
tools by either the interleaving explorer or the thread-safety oracle
adopted by the tool. CovCon, ConTeGe, CovConJPF and Con-
TeGeJPF use interleaving explorers that are not limited to any fault
category, thus they can potentially detect all faults in JaConTeBe,
but rely on implicit oracles that can detect only faults that manifest
exceptions or endless hangs as type of failure. Therefore, these tools
could detect atmost∼80% of the JaConTeBe faults. Omen can detect
only "resource deadlocks" faults and "endless hang" failures, which
amount of 34% of the JaConTeBe faults. AutoConTest, Narada
and Intruder rely on internal oracles, which do not impose any
restrictions on the failure type, but rely on interleaving explorers
and oracles that are limited to "race/atomicity" faults,which amount
of ∼43% of the JaConTeBe faults. We executed all tools on all the
subjects (even the combinations with the gray background), since
some concurrency faults could manifest with failure types different
from the ones specified in the JaConTeBe benchmark.

Effectiveness. ConTeGe detects five faults that belong to two
different categories, and that lead to failures of three types. It detects
groovy6, which is not detected by any other tools. ConTeGeJPF

detects three of the faults detected with ConTeGe. AutoConTest
detects two atomicity violations. CovCon detects six faults of two
categories and two failure types, detecting more faults than any
other tool. CovConJPF detects four of the faults detected by Cov-
Con. Omen does not detect any fault. Narada detects one fault
log4j_1, which is not detected by any other tool. Intruder detects
the fault log6_3, which is also detected by three other tools. Auto-
ConTest, Narada and Intruder detect the faults in all the ten
runs, showing stability with respect to non-determinism comparing
with the other tools, which have a lower fault detection rate. It is
worth mentioning that, for some faults, AutoConTest crashes due
to incompatibility issues with the instrumentation framework used
to compute the coverage. For subjects dbcp1, dbcp2, derby1, derby2
and derby4, most of the tools (including Randoop) fail to generate
any tests that successfully instantiate the class under test, which
requires a complex method call sequence.

Efficiency. The overall detection time varies from 15 seconds
for subject log4j_3 to 2,617 seconds for jdk6_13. CovCon is the
fastest among the four tools that detected at least three faults, with
an average detection time of 198 seconds (see last row in Table 4),
followed by ConTeGeJPF (388 seconds), CovConJPF (546 seconds)
and ConTeGe (780 seconds). The readers should notice that Con-
TeGeJPF and CovConJPF detect the faults faster than the original
configurations, despite the fact that JPF is computationally more ex-
pensive than the random interleaving exploration of ConTeGe and
CovCon. This is because ConTeGeJPF and CovConJPF explored

ASE ’18, September 3–7, 2018, Montpellier, France Valerio Terragni and Mauro Pezzè

Table 5: Common Issues and Their Distribution Across The 47 Subjects

Problems Percentage Faults IDs

Invalid assumptions (1, 2, 3) 40.42% dbcp{1-2-3}, derby{2-4-5}, groovy{1-2-6}, log4j{2-4-5}, lucene1, jdk6_{7-8-9-12}, jdk7_{2-4}
|-Invalid assumption 1 (two threads only) 12.77% groovy{1-2}, log4j{2-4-5}, lucene1
|-Invalid assumption 2 (one shared object only) 25.53% dbcp{1-2-3}, derby{2-4-5}, groovy6, jdk6_7, jdk7_4, log4_2
|-Invalid assumption 3 (no static invocations) 17.02% dbcp3, groovy6, jdk6_{8-9-12}, jdk7_{2-4}, log4_2
Environmental dependencies 25.53% derby1, groovy{1-2-3}, jdk6_{2-9-10-12}, jdk7_{1,2}, lucene{1-2}
Inadequacy for wait-notify 19.15% jdk6_9, jdk7_5, log4j{4-5}, lucene{1-2}, pool{2-3-4}

the interleaving space of fewer tests before exposing the fault. This
suggests that the random interleaving exploration of ConTeGe
and CovCon easily miss failure-inducing interleavings even if the
generated test can manifest one.

All tools report some thread-safety violations unrelated to the
faults under analysis, whichmight or might not be true concurrency
faults. ConTeGe, CovCon, ConTeGeJPF and CovConJPF report
a unrelated ConcurrentModificationException for jdk6_7, jdk6_10,
and jdk6_11. Intruder and AutoConTest detect the jdk6_3 fault,
and also report unrelated atomicity violations when analyzing this
subject. Omen detect an unrelated deadlock for jdk6_4.

Automated concurrent test generators find 17% of the JaConTeBe
faults, and none of them alone finds more than 13% of the faults. The
average fault detection time ranges from 15 to 2,617 seconds.

5 RESULTS ANALYSIS AND DISCUSSION

The experimental results that we discussed in the previous sec-
tion indicate limited complementarity among the concurrent test
generators: half of the detected faults are revealed by at least four
different tools. The results also indicate some overall incomplete-
ness of the current approaches, since 83% of the concurrency faults
in the JaConTeBe benchmark are not detected by any tool.

The absence of effective oracles is not the main reason of many
undetected faults. In fact, the combinations of failure types and
fault categories that characterise each subject of the JaConTeBe
benchmark (with the only exception of pool5) can be revealed by the
interleaving explorer and thread-safety oracle of at least three tools
(see Table 4). This confirms that while automatically generating
effective test oracles is a major challenges faced by sequential test
generators [11, 23, 39, 62], generating oracles for concurrent tests is
less critical [33, 67]: Lu et al. shown that 70% of concurrency faults
lead to exceptions or hangs [33]. Moreover, Yu et al. proved that
internal oracles are effective in detecting those concurrency faults
that do not manifest visible oracle violations [67].

We manually analyzed the results of the experiments to identify
and better understand why the tools fail to expose the considered
concurrency faults. We relied on the manually-written tests in
JaConTeBe to learn the characteristics of the concurrent tests that
find faults that are not revealed with automatically generated tests.

We identified three main issues related to concurrent test gen-
eration: invalid assumptions, environmental dependencies, and
inadequacy for wait-notify, as shown in Table 5. Each subject can
suffer from more than one issue.

5.1 Invalid Assumptions

All surveyed techniques reduce the search space and facilitate
fault detection by relying on some predefined assumptions on the
concurrent tests that they generate: two threads only, one shared
object only and no static invocations. Our results indicate that about
40% of the faults in the JaConTeBe benchmark cannot be revealed
without violating at least one of such assumptions (see Table 5).

Assumption 1: exactly two concurrent threads.All surveyed
techniques generate concurrent tests with exactly two concurrent
suffixes, following the Lu et al.’s study that shows that 96% of con-
currency faults can be manifested by enforcing a certain partial
order between two concurrent threads only [33]. By inspecting
the 47 failure-inducing tests in the JaConTeBe benchmark, we
observe that 70.21% spawn two concurrent threads only. This is an
under-approximation, because some tests are designed according
to a stress-test methodology, which spawns many identical threads
for increasing the chance to trigger a fault-revealing interleaving.
Thus, some of the faults revealed with tests with more than two
concurrent threads may be also revealed with tests with only two
concurrent threads. We refined the study by manually identifying
the fault-revealing tests that adopt a stress-test methodology, and
concluded that 12.77% of the faults cannot be revealed with tests
with two concurrent threads only. It is fairly easy to modify the
tools for generating concurrent tests with an arbitrary number of
suffixes, to target also faults that can be revealed only with more
than two concurrent threads, but it may dramatically impact on the
performance and effectiveness of the tools.

Assumption 2: at most a shared object instance. Most sur-
veyed techniques generate concurrent tests that access from multi-
ple threads only one shared object of the class under test, according
to the intuition that accessing a single shared object is enough
to trigger faults related to concurrent accesses to shared memory
locations5. However, in some cases two (or more) object instances,
although distinct, may access the same memory locations, and thus
they could trigger concurrency failures. Such failures cannot be
exposed with tests that instantiate a single shared object. For in-
stance, in the fault-revealing concurrent test of the subject derby5
in Figure 4, the concurrent execution of the suffixes leads to a con-
currency failure even if the two suffixes do not access the same
shared object, but two different objects (baseContainerHandle and
storedPage). This happens because the setter methods in the se-
quential prefix mutually set each other references (line 4 and 5 in
Figure 4). By inspecting the JaConTeBe benchmark, we observe
that Assumption 2 is violated in 25.53% faults.

5Only ConTeGe and ConTeGeJPF generate tests that access more than one shared
object.

Effectiveness and Challenges in Generating Concurrent Tests for Thread-Safe Classes ASE ’18, September 3–7, 2018, Montpellier, France

1 // Sequential Prefix
2 ... // omitted for brevity
3 ...
4 storedPage.setExclusive(baseContainerHandle);
5 baseContainerHandle.addObserver(storedPage);
6
7 new Thread(new Runnable() {
8 public void run() {
9 baseContainerHandle.close(); // Suffix 1
10 }}).start();
11
12 new Thread(new Runnable() {
13 public void run() {
14 storedPage.releaseExclusive(); // Suffix 2
15 }}).start();

Figure 4: Manually-written test of the subject derby5, show-

ing the case of two shared variables.

Assumption 3: only non-static methods. All techniques but
ConTeGe and ConTeGeJPF generate concurrent tests that invoke
non-static methods of shared object instances only, following the in-
tuition that most concurrency faults derive from incorrect accesses
to dynamic instances. However, some JaConTeBe concurrency
faults are exposed only with concurrent tests that either invoke
static methods or access public static fields. By inspecting the Ja-
ConTeBe benchmark, we observe that Assumption 3 is violated
in 17.02% faults. Only ConTeGe detects the fault groovy6, which
requires the invoking of static methods (see Table 4).

5.2 Environmental Dependencies

A major challenge in generating both sequential and concurrent
tests is to properly instantiate environmental dependencies to suit-
ably exercise method call sequences, for instance, create certain
files or database connections. For example, the fault-revealing con-
current test for subject jdk6_6 in Figure 5 requires a specific folder
structure in the file system. Classic tools for generating sequential
tests simulate dependencies on files and database connections with
mocking techniques [3, 58]. Combining concurrent test generators
with such techniques may address the environment dependency
issues that account for 25.53% of the JaConTeBe faults.

5.3 Inadequacy for Wait-Notify

A relevant aspect of shared memory synchronization is the use
of shared objects to pass messages: threads block their execution
waiting to receive messages from other threads. This mechanism is
implemented with primitives wait(), notify() and notifyAll() in
Java6 and wait(), signal() and broadcast() in C++.

None of the surveyed techniques supports such mechanism,
and therefore none generates concurrency tests that can expose
failures involving the execution of wait and notify. The two-step
concurrent test generation approach illustrated in Figure 3 and
implemented by all the techniques cannot address wait and notify

related failures. The general approach works as follows: Step 1 gen-
erates single-threaded method call sequences, and Step 2 assembles
such sequences in concurrent tests. Step 1 executes each newly
generated sequence, and discards those that either throw excep-
tions or hang indefinitely. Such sequences are neither extended
nor used to assemble new concurrent tests since they are likely
6From Java 1.5 the mechanism is also implemented with await(), signal() in
the java.util.concurrent package.

1 // Sequential Prefix
2 final String dirA = projectBase + "/base/a";
3 final String dirB = projectBase + "/base/b";
4
5 new Thread(new Runnable() {
6 public void run() {
7 File file = new File(dirA); // Suffix 1
8 file.mkdirs();
9 }}).start();
10
11 new Thread(new Runnable() {
12 public void run() {
13 File file = new File(dirB); // Suffix 2
14 file.mkdirs();
15 }}).start();

Figure 5: Manually-written test of the subject jdk6_2, show-

ing the case of the environmental dependencies problem.

illegal [37]. Discarding sequences that hang indefinitely on a sin-
gle thread raises an issue in the presence of wait invocations: if a
method invocation of the class under test puts the executor thread
on an object wait, then the sequential test generator cannot call a
new method on a different thread that will wake up the executor,
a time-out exception is raised, and the sequence is discarded. As
a result, all the concurrent tests that contain invocations of wait
are discarded. However, the execution of wait is essential to trigger
wait-notify deadlocks. Wait-notify faults amount to 19% of the
JaConTeBe subjects.

6 THREATS TO VALIDITY

Relevant threats to the validity of the results derive from the
choice of the subjects, the time budget for the experiments, the se-
lection of auxiliary classes and the choice of configuration options.

Choice of the subjects. We refer to faults present in open-
source Java projects, and this may not generalize to all program-
ming languages and program characteristics. Generalising the re-
sults would require extending the techniques originally defined for
Java programs to a suitable variety of concurrent programming
languages.

Time budget for the experiments. The time budgets of the
experiment may impact on the number of detected faults: increasing
the time budget may lead to detect more faults. The nature of the
undetected faults discussed in Table 5 and the characteristics of
the evaluated techniques indicate that for many cases no technique
would detect any additional faults even with an unlimited time
budget. In our experiments, we set the time budget to an hour per
subject, according to the experiments of the most recent of the
surveyed techniques [12].

Selection of auxiliary classes. We select the auxiliary classes
by relying on fault-triggering manually-written tests provided in
the JaConTeBe benchmark. The existence of such tests nullifies
the need of running concurrent test generators, but it is useful in
the evaluation, since it provides a set of auxiliary classes that are
sufficient for revealing the fault.

Configuration options. The configuration options of the tools
and the setup of the execution environments may impact on the
effectiveness of the considered tools. We mitigated this threat by
comparing the possible configuration options and inspecting the
feedback from the execution environment. We also verified that
the tools when executed in our environment were able to detect
the concurrency failures reported in the corresponding papers.

ASE ’18, September 3–7, 2018, Montpellier, France Valerio Terragni and Mauro Pezzè

7 RELATEDWORK

To our knowledge, this paper presents the first independent
empirical study that evaluates, compares and discusses the state-of-
the-art generators of concurrent tests. Bianchi et al.’s recent survey
proposes a comprehensive view of the state-of-the-art techniques
for concurrent testing, and discusses the techniques based on the
published papers [6]. Conversely, this paper focuses on concurrent
test generators only and provides important additional empirical
data. Related empirical studies focus either on techniques that ex-
plore the interleaving spaces of manually-written concurrent tests
or on test generators for sequential programs.

Thomson et al. evaluated schedule bounding techniques for sys-
tematic concurrency testing, preparing a benchmark of 52 faulty
concurrent programs [61]. Lin et al. evaluated interleaving explo-
ration techniques (Step 3 and 4 in Figure 3) on the JaConTeBe
benchmark [31] given the manually-written tests in input. Hong
and Kim empirically evaluated detectors of data races [27].

Several empirical studies evaluated test generation techniques
for sequential object-oriented programs [13, 19, 21, 66]. Xiao et
al. [66] inspected the issues that limit test generators tools in ob-
taining high structural coverage. They found that the main issues
are (i) dependencies on external methods, and (ii) finding a suitable
method sequence to derive desired input object states. Shamshiri
et al. [54] compared three popular generators of sequential tests:
Randoop [37], Evosuite [20] and AgitarOne (www.agitar.com)
using the Defects4J [29] benchmark. They found that the oracle
problem remains the major obstacle, as 63.3% of the undetected
faults were covered by automatically generated tests at least once.
Fraser and Arcuri evaluated Evosuite [20] on a set of randomly se-
lected open source projects [21]. Unsurprisingly, since a concurrent
test is a concatenation of sequential tests, some of the challenges
faced by concurrent test generators are inherited from those faced
by sequential test generators. For example, the object creation prob-
lem in the presence of complex inputs [66]. The study presented in
this paper raises additional insights and challenges that are specific
to concurrent test generation.

8 CONCLUSION AND FUTURE RESEARCH

DIRECTIONS

In this paper, we surveyed the main state-of-the-art techniques
for generating concurrent tests, and we empirically evaluate and
compare the ones for which we have been able to access a publicly
available tool. We surveyed nine techniques and compared six of
them, by referring to the 47 JaConTeBe benchmark. Our results
show that overall the evaluated techniques can detect 17% of the
JaConTeBe faults, which is an impressive result, if we consider
that the faults remained undetected for years in popular code bases
(many detected faults are in Java, which runs in over 15 billions
devices). Current test generators could have revealed the faults and
avoided their manifestation in the field.

The generation of concurrent tests is a relatively young but
promising approach. Our evaluation results indicate a large space
for improving its overall effectiveness. The analysis of the faults
that current techniques do not detect yields insights into the main
limitations, and indicates future research directions: adaptive con-
figuration, search space reduction, and wait-notify handling.

Adaptive configuration.Current generators of concurrent tests
work under some predefined assumptions on the tests being gener-
ated, as discussed in Section 5.1. These assumptions can drastically
reduce the search space, thus improving the efficiency of the tech-
niques, but can also prevent the generation of fault-revealing tests.
Some tools allow users to enable/disable some of these assumptions
in the form of configuration parameters [40]. However, no tool pro-
vide support to understand the impact of different configurations
on the fault-detection capability for a given program under anal-
ysis. Interesting research directions are both studying techniques
to automatically identify a proper configuration and defining self-
adaptive interleaving explorers. CovCon and ConTeGe are exam-
ples of tools that can benefit from self-adaptive strategies. Both of
them execute each test a fixed number of iterations independently
from the nature of the test. The choice of the number of iterations
is important, since too few iterations may miss a fault-revealing
interleaving while too many could waste testing resources. A self-
adaptive strategy could identify an optimal number of iterations
for a test by approximating the number of thread interleavings that
can be manifested when executing the test itself. Intuitively, the
number of iterations should grow proportionally with respect to
such number. Lu et al.’s formulas could provide useful hints for a
cost-effective way to compute such approximations [32].

Search space reduction. Concurrent test generators explore
a huge space of tests when generating concurrent tests. Given a
class under test, it often exists a myriad of possible combinations of
method invocations and input parameters. Generating all possible
tests and exploring their interleaving spaces within an affordable
time-budget remain infeasible. An interesting research direction
is to define approaches that identify methods that cannot lead to
a thread-safety violation if assembled in the same concurrent test,
before generating the tests. Generating concurrent tests that involve
such methods can be avoided without affecting fault-detection
capabilities.

Wait-notify handling.As discusses in Section 5.3, current tech-
niques cannot generate tests that expose wait-notify concurrency
faults. To size the impact of this limitation, we observe that search-
ing for .wait() AND .notify() in github.com produces ∼60 millions
code results. Using wait-notify synchronization primitives is not a
matter of code style, since their synchronization behaviour cannot
be simulated using other synchronization primitives like locks [64].
An important research direction is to update the four-steps frame-
work for concurrent test generation presented in Figure 3. For
instance, by recombining all steps to enable simultaneous test gen-
eration and interleaving exploration. Test generators could generate
and execute method call sequences on multiple threads simultane-
ously so that, if a wait is executed putting the executing thread in a
suspended state, another thread can unblock the suspended thread
by generating and executing another method call sequence.

ACKNOWLEDGMENTS

This work is partially supported by the Swiss SNF project AS-
TERIx: Automatic System TEsting of inteRactive software applications
(SNF 200021_178742).

www.agitar.com

Effectiveness and Challenges in Generating Concurrent Tests for Thread-Safe Classes ASE ’18, September 3–7, 2018, Montpellier, France

REFERENCES

[1] 2018. Effectiveness and Challenges in Generating Concurrent Tests for Thread-
safe Classes. http://star.inf.usi.ch/star/software/contest2018/index.htm. (2018).

[2] 2018. JaConTeBe. http://sir.unl.edu/portal/bios/JaConTeBe.php. (2018).
[3] Andrea Arcuri, Gordon Fraser, and Juan Pablo Galeotti. 2014. Automated Unit

Test Generation for Classes with Environment Dependencies. In Proceedings of
the International Conference on Automated Software Engineering (ASE ’14). ACM,
79–90.

[4] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo.
2015. The Oracle Problem in Software Testing: A Survey. IEEE Transactions on
Software Engineering 41, 5 (2015), 507–525.

[5] Victor R Basili, Richard W Selby, and David H Hutchens. 1986. Experimentation
in Software Engineering. IEEE Transactions on Software Engineering 7 (1986),
733–743.

[6] Francesco A. Bianchi, Alessandro Margara, and Mauro Pezzè. 2017. A Survey of
Recent Trends in Testing Concurrent Software Systems. IEEE Transactions on
Software Engineering (2017).

[7] Francesco A. Bianchi, Mauro Pezzè, and Valerio Terragni. 2017. Reproducing
Concurrency Failures from Crash Stacks. In Proceedings of the Joint Meeting on
Foundations of Software Engineering (ESEC/FSE ’17). ACM, 705–716.

[8] StephenM. Blackburn, Robin Garner, Chris Hoffmann, AsjadM. Khang, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,
Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B.
Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von
Dincklage, and Ben Wiedermann. 2006. The DaCapo Benchmarks: Java Bench-
marking Development and Analysis. In Proceedings of the Conference on Object-
Oriented Programming Systems and Applications (OOPSLA ’06). ACM, 169–190.

[9] Sebastian Burckhardt, Chris Dern, Madanlal Musuvathi, and Roy Tan. 2010. Line-
up: A Complete and Automatic Linearizability Checker. In Proceedings of the
Conference on Programming Language Design and Implementation (PLDI ’10).
ACM, 330–340.

[10] Yan Cai, Shangru Wu, and W. K. Chan. 2014. ConLock: A Constraint-based
Approach to Dynamic Checking on Deadlocks in Multithreaded Programs. In
Proceedings of the International Conference on Software Engineering (ICSE ’14).
ACM, 491–502.

[11] Antonio Carzaniga, Alberto Goffi, Alessandra Gorla, Andrea Mattavelli, and
Mauro Pezzè. 2014. Cross-checking Oracles from Intrinsic Software Redundancy.
In Proceedings of the International Conference on Software Engineering (ICSE ’14).
ACM, 931–942.

[12] Ankit Choudhary, Shan Lu, and Michael Pradel. 2017. Efficient Detection of
Thread Safety Violations via Coverage-Guided Generation of Concurrent Tests.
In Proceedings of the International Conference on Software Engineering (ICSE ’17).
IEEE Computer Society, 266–277.

[13] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Auto-
mated Test Input Generation for Android: Are We There Yet?. In Proceedings of
the International Conference on Automated Software Engineering (ASE ’16). IEEE
Computer Society, 429–440.

[14] Dongdong Deng, Wei Zhang, and Shan Lu. 2013. Efficient Concurrency-bug
Detection Across Inputs. In Proceedings of the Conference on Object-Oriented
Programming Systems and Applications (OOPSLA ’13). ACM, 785–802.

[15] Yaniv Eytani, Klaus Havelund, Scott D Stoller, and Shmuel Ur. 2007. Towards
a Framework and a Benchmark for Testing Tools for Multi-threaded Programs.
Concurrency and Computation: Practice and Experience 19, 3 (2007), 267–279.

[16] Azadeh Farzan, Andreas Holzer, Niloofar Razavi, and Helmut Veith. 2013.
Con2colic Testing. In Proceedings of the ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE ’13). ACM, 37–47.

[17] Cormac Flanagan and Stephen N. Freund. 2004. Atomizer: A Dynamic Atom-
icity Checker for Multithreaded Programs. In Proceedings of the Symposium on
Principles of Programming Languages (POPL ’04). ACM, 256–267.

[18] Cormac Flanagan and Patrice Godefroid. 2005. Dynamic Partial-order Reduction
for Model Checking Software. In Proceedings of the Symposium on Principles of
Programming Languages (POPL ’05). ACM, 110–121.

[19] Gordon Fraser and Andrea Arcuri. 2013. EvoSuite: On the Challenges of Test
Case Generation in the Real World. In Proceedings of the International Conference
on Software Testing, Verification and Validation (ICST ’13). IEEE Computer Society,
362–369.

[20] Gordon Fraser and Andrea Arcuri. 2013. Whole Test Suite Generation. IEEE
Transactions on Software Engineering 39, 2 (2013), 276–291.

[21] Gordon Fraser and Andrea Arcuri. 2014. A Large-Scale Evaluation of Automated
Unit Test Generation Using EvoSuite. ACM Transactions on Software Engineering
and Methodology 24, 2, Article 8 (Dec. 2014), 42 pages.

[22] Brian Goetz and Tim Peierls. 2006. Java Concurrency in Practice. Pearson Educa-
tion.

[23] Alberto Goffi, Alessandra Gorla, Michael D. Ernst, and Mauro Pezzè. 2016. Au-
tomatic Generation of Oracles for Exceptional Behaviors. In Proceedings of the
International Symposium on Software Testing and Analysis (ISSTA ’16). ACM,
213–224.

[24] Shengjian Guo, Markus Kusano, Chao Wang, Zijiang Yang, and Aarti Gupta.
2015. Assertion Guided Symbolic Execution of Multithreaded Programs. In
Proceedings of the ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE ’13). ACM, 854–865.

[25] Klaus Havelund and Thomas Pressburger. 2000. Model Checking Java Programs
Using Java Pathfinder. International Journal on Software Tools for Technology
Transfer 2, 4 (2000), 366–381.

[26] Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness
Condition for Concurrent Objects. ACM Transactions on Programming Languages
and Systems 12, 3 (1990), 463–492.

[27] Shin Hong and Moonzoo Kim. 2015. A Survey of Race Bug Detection Techniques
for Multithreaded Programmes. Software Testing, Verification and Reliability 25,
3 (2015), 191–217.

[28] Pallavi Joshi, Chang-Seo Park, Koushik Sen, andMayur Naik. 2009. A Randomized
Dynamic Program Analysis Technique for Detecting Real Deadlocks. In Proceed-
ings of the Conference on Programming Language Design and Implementation
(PLDI ’09). ACM, 110–120.

[29] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A Database
of Existing Faults to Enable Controlled Testing Studies for Java Programs. In
Proceedings of the International Symposium on Software Testing and Analysis
(ISSTA ’14). ACM, 437–440.

[30] Zhifeng Lai, S. C. Cheung, and W. K. Chan. 2010. Detecting Atomic-set Seri-
alizability Violations in Multithreaded Programs Through Active Randomized
Testing. In Proceedings of the International Conference on Software Engineering
(ICSE ’10). ACM, 235–244.

[31] Ziyi Lin, Darko Marinov, Hao Zhong, Yuting Chen, and Jianjun Zhao. 2015.
JaConTeBe: A Benchmark Suite of Real-World Java Concurrency Bugs (T). In
Proceedings of the International Conference on Automated Software Engineering
(ASE ’15). IEEE Computer Society, 178–189.

[32] Shan Lu, Weihang Jiang, and Yuanyuan Zhou. 2007. A Study of Interleaving
Coverage Criteria. In Proceedings of the European Software Engineering Conference
held jointly with the ACM SIGSOFT International Symposium on Foundations of
Software Engineering (ESEC-FSE companion ’07). ACM, 533–536.

[33] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learning from
Mistakes: A Comprehensive Study on Real World Concurrency Bug Character-
istics. In Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’08). ACM, 329–339.

[34] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Pira-
manayagam Arumuga Nainar, and Iulian Neamtiu. 2008. Finding and Reproduc-
ing Heisenbugs in Concurrent Programs. In Proceedings of the Symposium on
Operating Systems Design and Implementation (OSDI ’08). USENIX Association,
267–280.

[35] Adrian Nistor, Qingzhou Luo, Michael Pradel, Thomas R. Gross, and Darko
Marinov. 2012. BALLERINA: Automatic Generation and Clustering of Efficient
Random Unit Tests for Multithreaded Code. In Proceedings of the International
Conference on Software Engineering (ICSE ’12). IEEE Computer Society, 727–737.

[36] Semih Okur and Danny Dig. 2012. How Do Developers Use Parallel Libraries?.
In Proceedings of the ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE ’12). ACM, 54:1–54:11.

[37] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007.
Feedback-Directed Random Test Generation. In Proceedings of the International
Conference on Software Engineering (ICSE ’07). ACM, 75–84.

[38] Soyeon Park, Shan Lu, and Yuanyuan Zhou. 2009. CTrigger: Exposing Atomicity
Violation Bugs from Their Hiding Places. In Proceedings of the International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’09). ACM, 25–36.

[39] Mauro Pezzè and Cheng Zhang. 2015. Automated Test Oracles: A Survey. In
Advances in Computers. Vol. 95. Elsevier, 1–48.

[40] Michael Pradel and Thomas R. Gross. 2012. Fully Automatic and Precise Detection
of Thread Safety Violations. In Proceedings of the Conference on Programming
Language Design and Implementation (PLDI ’12). ACM, 521–530.

[41] Michael Pradel and Thomas R. Gross. 2013. Automatic Testing of Sequential
and Concurrent Substitutability. In Proceedings of the International Conference on
Software Engineering (ICSE ’13). IEEE Computer Society, 282–291.

[42] Michael Pradel, Markus Huggler, and Thomas R. Gross. 2014. Performance
Regression Testing of Concurrent Classes. In Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA 2014). ACM, 13–25.

[43] Ganesan Ramalingam. 2000. Context-sensitive Synchronization-sensitive Analy-
sis is Undecidable. ACM Transactions on Programming Languages and Systems 22,
2 (2000), 416–430.

[44] Niloofar Razavi, Franjo Ivančić, Vineet Kahlon, and Aarti Gupta. 2012. Concurrent
Test Generation Using Concolic Multi-trace Analysis. In Asian Symposium on
Programming Languages and Systems (ASPLS ’10). Springer, 239–255.

[45] Malavika Samak and Murali Krishna Ramanathan. 2014. Multithreaded Test
Synthesis for Deadlock Detection. In Proceedings of the Conference on Object-
Oriented Programming Systems and Applications (OOPSLA ’14). ACM, 473–489.

[46] Malavika Samak and Murali Krishna Ramanathan. 2014. Omen+: A Precise
Dynamic Deadlock Detector forMultithreaded Java Libraries. In Proceedings of the

http://star.inf.usi.ch/star/software/contest2018/index.htm
http://sir.unl.edu/portal/bios/JaConTeBe.php

ASE ’18, September 3–7, 2018, Montpellier, France Valerio Terragni and Mauro Pezzè

ACM SIGSOFT International Symposium on Foundations of Software Engineering.
ACM, 735–738.

[47] Malavika Samak and Murali Krishna Ramanathan. 2014. Trace Driven Dynamic
Deadlock Detection and Reproduction. In Proceedings of the Symposium on Prin-
ciples and Practice of Parallel Programming (PPoPP ’14). ACM, 29–42.

[48] Malavika Samak and Murali Krishna Ramanathan. 2015. Synthesizing Tests for
Detecting Atomicity Violations. In Proceedings of the ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE ’15). ACM.

[49] Malavika Samak, Murali Krishna Ramanathan, and Suresh Jagannathan. 2015.
Synthesizing Racy Tests. In Proceedings of the Conference on Programming Lan-
guage Design and Implementation (PLDI ’15). ACM, 175–185.

[50] Malavika Samak, Omer Tripp, and Murali Krishna Ramanathan. 2016. Directed
Synthesis of Failing Concurrent Executions. In Proceedings of the Conference
on Object-Oriented Programming Systems and Applications (OOPSLA ’16). ACM,
430–446.

[51] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas E.
Anderson. 1997. Eraser: A Dynamic Data Race Detector for Multithreaded
Programs. ACM Transactions on Computer Systems 15, 4 (1997), 391–411.

[52] Jochen Schimmel, Korbinian Molitorisz, Ali Jannesari, and Walter F Tichy. 2013.
Automatic Generation of Parallel Unit Tests. In Proceedings of the International
Workshop on Automation of Software Test (AST ’10). IEEE Computer Society,
40–46.

[53] Jochen Schimmel, Korbinian Molitorisz, Ali Jannesari, and Walter F Tichy. 2015.
Combining Unit Tests for Data Race Detection. In Proceedings of the International
Workshop on Automation of Software Test (AST ’15). IEEE Computer Society,
43–47.

[54] Sina Shamshiri, René Just, José Miguel Rojas, Gordon Fraser, Phil McMinn, and
Andrea Arcuri. 2015. Do Automatically Generated Unit Tests Find Real Faults?
An Empirical Study of Effectiveness and Challenges. In Proceedings of the Interna-
tional Conference on Automated Software Engineering (ASE ’15). IEEE Computer
Society, 201–211.

[55] Elena Sherman, Matthew B. Dwyer, and Sebastian Elbaum. 2009. Saturation-based
Testing of Concurrent Programs. In Proceedings of the ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE ’09). ACM, 53–62.

[56] L. A. Smith, J. M. Bull, and J. Obdrizalek. 2001. A Parallel Java Grande Benchmark
Suite. In Supercomputing, ACM/IEEE 2001 Conference. 6–6.

[57] Sebastian Steenbuck and Gordon Fraser. 2013. Generating Unit Tests for Concur-
rent Classes. In Proceedings of the International Conference on Software Testing,
Verification and Validation (ICST ’13). IEEE Computer Society, 144–153.

[58] Kunal Taneja, Yi Zhang, and Tao Xie. 2010. MODA: Automated Test Generation
for Database Applications via Mock Objects. In Proceedings of the International
Conference on Automated Software Engineering (ASE ’10). ACM, 289–292.

[59] Valerio Terragni and Shing-Chi Cheung. 2016. Coverage-driven Test Code Gen-
eration for Concurrent Classes. In Proceedings of the International Conference on
Software Engineering (ICSE ’16). ACM, 1121–1132.

[60] Valerio Terragni, Shing-Chi Cheung, and Charles Zhang. 2015. RECONTEST:
Effective Regression Testing of Concurrent Programs. In Proceedings of the Inter-
national Conference on Software Engineering (ICSE ’15). IEEE Computer Society,
246–256.

[61] Paul Thomson, Alastair F. Donaldson, and AdamBetts. 2014. Concurrency Testing
Using Schedule Bounding: An Empirical Study. In Proceedings of the Symposium
on Principles and Practice of Parallel Programming (PPoPP ’14). ACM, 15–28.

[62] Paolo Tonella. 2004. Evolutionary Testing of Classes. In Proceedings of the Inter-
national Symposium on Software Testing and Analysis (ISSTA ’04). ACM, 119–128.

[63] Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park, and Flavio
Lerda. 2003. Model Checking Programs. Automated Software Engineering 10, 2
(2003), 203–232.

[64] ChaoWang, Rhishikesh Limaye, Malay Ganai, and Aarti Gupta. 2010. Trace-Based
Symbolic Analysis for Atomicity Violations. In Proceedings of the International
Conference on Tools and Algorithms for Construction and Analysis of Systems
(TACAS ’10). Springer, 328–342.

[65] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in Software Engineering. Springer Science
& Business Media.

[66] Xusheng Xiao, Tao Xie, Nikolai Tillmann, and Jonathan de Halleux. 2011. Precise
Identification of Problems for Structural Test Generation. In Proceedings of the
International Conference on Software Engineering (ICSE ’11). ACM, 611–620.

[67] Tingting Yu, Witawas Srisa-an, and Gregg Rothermel. 2013. An empirical com-
parison of the fault-detection capabilities of internal oracles. In Proceedings of
the International Symposium on Software Reliability Engineering (ISSRE ’13). IEEE
Computer Society, 11–20.

	Abstract
	1 Introduction
	2 Generating Concurrent Tests
	3 State-of-the-Art Generators of Concurrent Tests
	3.1 Random-Based Techniques
	3.2 Coverage-Based Techniques
	3.3 Sequential-Test-Based Techniques
	3.4 Interleaving Explorers and Thread-Safety Oracles

	4 Experiments
	4.1 Tool Selection
	4.2 Subject Selection
	4.3 Subject and Tool Preparation
	4.4 Evaluation Setup
	4.5 Results

	5 Results Analysis and Discussion
	5.1 Invalid Assumptions
	5.2 Environmental Dependencies
	5.3 Inadequacy for Wait-Notify

	6 Threats to Validity
	7 Related Work
	8 Conclusion and Future Research Directions
	References

