
Semantic-based Analysis of Javadoc Comments

Arianna Blasi♠ · Konstantin Kuznetsov♦ · Alberto Goffi† · Sergio Delgado Castellanos♠ ·
Alessandra Gorla♠ · Michael D. Ernst‡ and Mauro Pezzè†

♠IMDEA Software Institute, Madrid, Spain
♦Saarland University, Saarbrücken, Germany

†Università della Svizzera italiana (USI), Lugano, Switzerland
‡University of Washington, Seattle, USA

Abstract

Developers often document their code with
semi-structured comments such as Javadoc.
Such comments are a form of specification,
and often document the intended behavior of
a code unit, as well as its preconditions. The
goal of our project is to analyze Javadoc com-
ments to generate assertions aiming to ver-
ify that a software unit indeed behaves as ex-
pected. Existing works with this goal mainly
rely on syntactic-based techniques to match
natural language terms in comments to ele-
ments in the code under test. In this paper
we show the limitations of syntax-based tech-
niques, and we present our roadmap to seman-
tically analyze Javadoc comments.

1 Introduction

One of the most important activities in the software
development process is to verify that software behaves
as expected. As software evolves, it becomes more
compelling to automate the verification process, since
every change may introduce new issues, and detect-
ing problems as soon as they are introduced allows to
save significant time in debugging. Many techniques
can automatically generate inputs to test specific soft-
ware units [1, 2]. However, these techniques do not au-
tomatically check that software behaves as expected,
but rather assume that developers manually write as-
sertions for this purpose.

Copyright c© by the paper’s authors. Copying permitted for
private and academic purposes.

Proceedings of the Seminar Series on Advanced Techniques and
Tools for Software Evolution SATToSE 2017 (sattose.org).
07-09 June 2017, Madrid, Spain.

In our project we aim to analyze natural language
specifications, written in the form of Javadoc com-
ments, to automatically generate executable specifi-
cations of Java classes. Javadoc comments are semi-
structured, since they use predefined tags to describe
preconditions on method parameters (@param tags),
postconditions on regular executions (@return tags),
and on exceptional conditions (@throws tags). There
exist already a few techniques that can turn Javadoc
comments into assertions to check pre and postcondi-
tions of Java methods [3, 4], however they either focus
on specific patterns (e.g. checking for non null values)
or rely on simple syntax-based algorithms to match
terms in the natural language comment to elements in
the code to verify. Pattern-based and syntax matching
limit significantly the ability of these techniques to au-
tomatically generate assertions. Take for instance the
example in Listing 1. When analyzing the Javadoc
specification of method isInDanger(), we would aim to
generate an assertion that checks that this method re-
turns True if a threat was found. Thus, for given range
and threat values, we aim to generate an executable
condition such as the following:

if isInDanger(range ,threat)

assertNotNull(searchForDanger(range ,

threat));

This example shows the challenges of our goal: we
want to understand that in order to check the re-
turn condition of isInDanger(), the assertion has to
use searchForDanger(), which is another method of the
same class. A syntax-based technique would be able
to match the natural language comment “if a threat
was found” to a method only if its name were close
enough to the very same terms used in the comment
(e.g. threatFound(range, threat)). Unfortunately, it is
not the case here, since searchForDanger() is quite dis-
tant from the terms used in the comment. In order to
match the right method to be used in the assertion,
we need to have the semantic knowledge that threat is

1

a synonym of danger, and actions to search for and to
find are semantically related.

1 /* *
2 * Checks if there is a credible threatening

unit to this unit within a range of
moves .

3 *
4 * @param range The number of turns to

search for a threat within .
5 * @param threat The maximum tolerable

probability of a potentially
threatening unit .

6 * @return True if a threat was found
7 */
8 public boolean i s InDanger (int range , f loat

th rea t) { . . . }

10 /* *
11 * Searches for a unit that is a credible

threatening unit to this unit within a
range .

12 * ...
13 */
14 public PathNode searchForDanger(int range ,

f loat th rea t) { . . . }

Listing 1: Sample methods from the FreeCol project
(http://www.freecol.org).

The goal of our work is thus to enrich existing tech-
niques to automatically generate code assertions with
semantic knowledge, hoping to improve their effective-
ness.

The remained of the paper is structured as fol-
lows. Section 2 presents the state of the art, Section 3
presents some initial proposals on how to address the
problem, Section 4 presents the evaluation we plan to
perform and illustrates the future work.

2 State of the Art

There exist several works that use natural language
processing techniques to analyze Javadoc comments
for different purposes. Here we broadly classify them
according to whether they solely rely on syntax-based
algorithms or rather rely on some semantic knowledge.

2.1 Syntax-based approaches

@tComment, by Tan et al., parses Javadoc comments
to produce executable code conditions testing null val-
ues [3]. The tool tries to syntactically match single
words in the natural language text to method param-
eters. Thus, a comment such as “@param item has
to be null” would produce the condition item != null.
This technique shares the same goal of our project,
but it focuses only on null cases. Toradocu, by Goffi et
al., is more advanced since it can deal with cases other
than null conditions [4]. Toradocu uses part-of-speech
(POS) tagging, and matches subjects to code elements
that should be checked, and predicates to either prede-
fined patterns or methods that check properties. Thus,

with a comment like “@throws NullPointerException
if the list is empty”, it would be able to match list
to a method parameter that has a similar name, and
would invoke method isEmpty() on the list instance
to check whether it is empty. Toradocu though, can
match terms in the natural language comments to Java
elements (parameters and methods) only if they are
syntactically similar (i.e., up to a maximum Leven-
shtein distance threshold). It thus would be unable to
deal with the example presented in Section 1. With
a different purpose in mind, Steidl et al. also aim to
match words in comments to words used in method
names [5]. Their intent is to measure the cohesiveness
of these elements, and they propose this as a metric
for source code quality. Khamis et al. also aim to as-
sess the consistency of code and comments [6]. They
use POS-tagging to analyze comments, but use only
syntax-based heuristics to match comment elements
to the code.

As we already anticipated, syntax-based techniques
would fail at analyzing the comment presented in Sec-
tion 1. In the second part of this section we present
some techniques that use semantic equivalence to an-
alyze code.

2.2 Semantic-based approaches

Similarly to @tComment and Toradocu, Pandita et al.
aim to infer method specifications from natural lan-
guage API comments [7]. Beside syntax-based tech-
niques, they employ WordNet [8] to identify synonyms.
WordNet, which is the most well known project to
identify whether two terms are synonyms, has been
built using regular English documents, and has there-
fore limited abilities in software domains. Thus, in
order to identify more synonyms, Pandita et al. manu-
ally defined a limited set of relevant synonyms for the
domains they considered. This, however, limits the ap-
plicability and generality of the approach. Tian et al.
built SEWordSim, a database of terms similarity for
the software engineering domain [9]. While the goal of
this work is completely traversal to ours, SEWordSim
might be a useful resource for our purposes. Though,
the dataset is not publicly available.

As [5] and [6], Mcburney et al. also aim to assess the
quality of code documentation [10]. However, differ-
ently from the previous techniques, they rely on sev-
eral semantic similarity analyses to improve the ac-
curacy. The challenge of matching code elements to
words has been faced also by Deng et al., who pro-
pose a technique to process queries in natural lan-
guage to retrieve the corresponding method that im-
plements the requested functionality [11]. The tech-
nique works using models that have been trained on
two separate corpora of code comments and code ele-

2

ments, and therefore can also detect semantically sim-
ilar concepts. Sridhara et al., instead, aim to pro-
duce natural language descriptions of methods look-
ing at their implementation [12]. The analysis of code
elements relies on naming conventions and linguistic
knowledge that has been gained on a corpus of Java
programs. Zhai et al. aim to do the opposite, i.e., they
automatically generate code snippets given a natural
language specification [13]. The technique starts from
a set of pre-defined primitive models, and combines
them to generate the desired implementation. Srid-
hara et al. also compared different semantic similarity
techniques based on WordNet. Their study concludes
that to apply semantic analysis to software one would
either have to augment WordNet with relations that
are specific to software, or would have to retrain the
model with appropriate probabilities.

3 Semantic-based Javadoc analysis

The goal of our analysis is to translate Javadoc com-
ments into code assertions considering the semantics
of words. Our approach consists of three steps:

1. For each predefined Javadoc tag (e.g. @return) we
extract the natural language description of an as-
sertion under which the statement should hold. In
our example, the method should return True un-
der the condition “a threat was found”. We then
transform each comment into a set of propositions
using natural language processing techniques;

2. We analyze the code of the target class, and ex-
tract its fields and method signatures: name, ar-
guments, as well as return type;

3. Finally, we exploit semantic similarity to map
each part of the comment predicate to a specific
code element and generate assertions.

3.1 Comments processing

Given a Javadoc comment, we use the Stanford
Parser1, to 1) identify multiple sentences, 2) gener-
ate Stanford Dependencies(SD)—a representation of
grammatical relations between words—for each sen-
tence. Given the textual relations defined by SD, we
finally 3) extract subjects and related predicates. The
subject in a phrase defines the primary topic of a state-
ment, whereas the predicate, which is the reminder of
the sentence, characterizes the subject in some way. In
our example, “if a threat was found” contains the sub-
ject “threat”, and the predicate “was found”. When
the subject is represented by multiple words, we con-
sider all of them, i.e., a compound noun and its mod-
ifiers.

1https://nlp.stanford.edu/software/lex-parser.shtml

Due to the richness of natural language, it is hardly
feasible to correctly identify the meaning of each predi-
cate. To ease this step, we follow the pattern-matching
approach presented in Toradocu [4]. The authors
defined a set of patterns that commonly appear in
Javadoc comments to which a proposition can be
matched. This set includes patterns for sentences in
active and passive form, as well as copula. The predi-
cate can thus be comprised of verb, copular verb, com-
plement, negation modifier, and also passive auxiliary.
Finally, we may apply lemmatization to reduce the
inflectional forms of a word to a common base form
using a vocabulary and morphological analysis. Thus,
“found” would be converted to the base lemma “find”.

3.2 Code processing

Once we have propositions represented by pairs of
<subject, predicate> we aim to find an associa-
tion between each tuple and a Java code element of
the class under test. Thus, we collect code elements
that can be possible candidates for the mapping. The
match for a subject may happen with: a parameter
of the method the comment is referring to; a method
of the class under test; or the instance of the class it-
self. A predicate, in turn, can correspond to the pub-
lic fields and methods of the subject’s declared type.
Predicates containing arithmetic or null comparisons
typically do not have a proper matching method call,
and we thus match them to predefined patterns. Fi-
nally, we split each compound camel-cased term into
separate words. Hence, the searchForDanger method
name would be converted to “search for danger”.

3.3 Semantic mapping

To generate assertions we need to associate proposi-
tions to elements in the Java code. The basic ap-
proach would utilize a direct syntactic comparison
of words. However, it cannot cover more complex
cases. In our example it would work if there were
a method findThreat(). More advanced techniques
would apply lexical matching supplied with Leven-
shtein distance. Nevertheless, it would fail to iden-
tify the searchForDanger method, since neither threat
and find have syntactic elements in common with their
corresponding match.

To improve the automatic matching, we propose to
leverage semantic relationships between words. Of-
ten developers use synonyms while writing comments
for their code. For instance, they could use “lower”
in a comment and use “min” in a method signature.
These words are semantically equivalent and can sub-
stitute one another. To resolve this kind of relations
one can use WordNet or WordNet-like domain specific
datasets [8, 7, 9].

3

However, it cannot capture all equivalence relations.
In our example, WordNet did not list “danger” as a
synonym of the term “threat”. Besides, the terms
“find” and “search” are not in the relation of equiva-
lence.

Dealing with conceptual relationship is more com-
plex. For instance, the propositions “a graph contains
a vertex” and “a vertex exists in the graph” express
strong association, though, the verb “contain” is not
equivalent to “exist”. Hill at al. [14] emphasize the
contrast between synonymous similarity and associ-
ations. Word embedding has proved to be a power-
ful approach to represent word relations. It embeds
words in a high-dimensional vector space such that
words that appear close in the source text are close in
the final vector space. One of its most popular imple-
mentation is Word2Vec [15] — a two-layer neural net-
work model created by Google in 2013. Another one
is GloVe, developed by the Stanford NLP group [16].
While they differ in algorithms used for learning the
model, they can be both used for the same aim.

In our preliminary tests we found that the publicly
available pre-trained word vectors of the GloVe model
based on Common Crawl dataset2 already produce
good results, as they identify relations such as: “if ver-
tex exists” ; graph.containsVertex(v) and “if the
graph contains the edge” ; graph.getEdge(v1,v2)

In order to precisely capture the semantic peculiari-
ties of the domain, we plan to train a Word2Vec model
by feeding it with Javadoc comments. Of particular
interest is the Phrase2Vec model [17], which learns
continuous distributed vector representations for short
text snippets. Along with its ability to recognize word
collocations, it seems to be possible to identify domain
specific common phrases like “less then zero”, embed
them into a vector space, and identify their relations,
e.g. to the word “negative”. Moreover, Mikolov at
al. [18] showed that the Word2Vec model can be used
to infer missing dictionary entries by learning a linear
projection between vector spaces that represent each
language with the help of mapping from small bilingual
data. It is worth investigating whether the comments
corpus can be translated to the code name space is
such a way.

In many of the cases we considered, both the pred-
icate and the method are made by multiple words.
However, neither Word2Vec nor GloVe standard mod-
els support these cases; they produce vector repre-
sentations for single words and only for few common
phrases. In order to compare multiple words at once,
we may use Word Mover’s Distance (WMD) [19]. This
distance function measures the semantic distance be-
tween two text snippets as the cumulative distance

2http://nlp.stanford.edu/data/glove.840B.300d.zip

that all words in the first text have to exactly match
the words in the second text. Using WMD we plan to
look for all possible candidates among the extracted
code elements. Thus, the <threat, was found>
would match searchForDanger method. This match
would finally produce the assertion of our example:

this.searchForDanger(range , threat)!=null?

result ==true:result ==false

4 Evaluation Plan and Future Work

In order to evaluate the effectiveness of semantic anal-
ysis we are going to analyze various Java projects
that are well documented with Javadocs (e.g. Guava,
JGraphT).

For every Javadoc comment referring to a method,
we plan to identify code elements that are most seman-
tically related to it. Besides, we want to run syntactic-
based matching and compare the results. We want
to answer two research questions. First, we want to
prove that the semantic approach covers all the cases
that the syntactic one can resolve. Second, we want
to ensure that semantic technique can be more effi-
cient and can produce correct matching for complex
samples which cannot be handled by the syntactic ap-
proach. For this end we plan to manually build the
ground truth representing the correct mapping. Here,
we plan to rely on the assertions in test code written
either by developers or by us directly. This dataset
will allow us to evaluate the precision and recall of the
matches between code elements and comments.

Finally, we are going to generate assertions and have
a quantitative evaluation based on how many asser-
tions correctly compile. We also plan to evaluate how
our generated assertions improve test suites in terms
of code coverage.

To improve the chances of matching comments to
code elements, in the future we plan to employ static
and dynamic analysis of method bodies to have more
information about their behavior. Moreover, we plan
to analyze natural language text that is not included
in predefined tags. Such text, in fact, may contain
useful information that may be implicit in the parts of
comments we currently consider.

References

[1] G. Fraser and A. Arcuri, “EvoSuite: Automatic Test
Suite Generation for Object-oriented Software,” in In
Proc. 19th ACM SIGSOFT, ESEC/FSE ’11, pp. 416–
419, ACM, 2011.

[2] C. Pacheco and M. D. Ernst, “Randoop: Feedback-
directed Random Testing for Java,” in 22Nd ACM
SIGPLAN, OOPSLA ’07, pp. 815–816, ACM, 2007.

4

[3] S. H. Tan, D. Marinov, L. Tan, and G. T. Leavens,
“@tComment: Testing Javadoc comments to detect
comment-code inconsistencies,” in In Proc. 5th ICST,
pp. 260–269, 2012.

[4] A. Goffi, A. Gorla, M. D. Ernst, and M. Pezzè, “Au-
tomatic Generation of Oracles for Exceptional Behav-
iors,” in Proceedings of the International Symposium
on Software Testing and Analysis, ISSTA ’16, pp. 213–
224, 2016.

[5] D. Steidl, B. Hummel, and E. Juergens, “Quality anal-
ysis of source code comments,” in In Proc. 21st ICPC,
pp. 83–92, 2013.

[6] N. Khamis, R. Witte, and J. Rilling, “Automatic
quality assessment of source code comments: the
Javadocminer,” in NLDB, pp. 68–79, 2010.

[7] R. Pandita, X. Xiao, H. Zhong, T. Xie, S. Oney, and
A. Paradkar, “Inferring method specifications from
natural language API descriptions,” in In Proc. 34th
ICSE, pp. 815–825, 2012.

[8] G. A. Miller, “WordNet: a lexical database for En-
glish,” ACM, vol. 38, no. 11, pp. 39–41, 1995.

[9] Y. Tian, D. Lo, and J. Lawall, “SEWordSim:
Software-specific word similarity database,” in In
Proc. 36th ICSE, pp. 568–571, 2014.

[10] P. W. McBurney and C. McMillan, “An empirical
study of the textual similarity between source code
and source code summaries,” Empirical Software En-
gineering, vol. 21, no. 1, pp. 17–42, 2016.

[11] H. Deng, G. Chrupala, N. Calzolari, K. Choukri,
T. Declerck, H. Loftsson, B. Maegaard, J. Mariani,
A. Moreno, J. Odijk, et al., “Semantic approaches to
software component retrieval with English queries.,”
in LREC, pp. 3248–3252, 2014.

[12] G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Au-
tomatically detecting and describing high level actions
within methods,” in In Proc. 33rd ICSE, pp. 101–110,
2011.

[13] J. Zhai, J. Huang, S. Ma, X. Zhang, L. Tan, J. Zhao,
and F. Qin, “Automatic model generation from doc-
umentation for Java API functions,” in In Proc. 38th
ICSE, pp. 380–391, 2016.

[14] F. Hill, R. Reichart, and A. Korhonen, “Simlex-999:
Evaluating semantic models with (genuine) similarity
estimation,” Computational Linguistics, 2016.

[15] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Ef-
ficient estimation of word representations in vector
space,” arXiv preprint arXiv:1301.3781, 2013.

[16] J. Pennington, R. Socher, and C. D. Manning, “Glove:
Global Vectors for Word Representation,” in EMNLP,
vol. 14, pp. 1532–1543, 2014.

[17] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado,
and J. Dean, “Distributed representations of words
and phrases and their compositionality,” in Advances
in neural information processing systems, pp. 3111–
3119, 2013.

[18] T. Mikolov, Q. V. Le, and I. Sutskever, “Exploiting
similarities among languages for machine translation,”
arXiv preprint arXiv:1309.4168, 2013.

[19] M. J. Kusner, Y. Sun, N. I. Kolkin, K. Q. Weinberger,
et al., “From Word Embeddings To Document Dis-
tances,” in ICML, vol. 15, pp. 957–966, 2015.

5

