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SUMMARY

Testing GUI-based applications is hard and time consuming because it requires exploring a potentially huge
execution space by interacting with the graphical interface of the applications. Manual testing can cover only
a small subset of the functionality provided by applications with complex interfaces, and thus, automatic
techniques are necessary to extensively validate GUI-based systems. This paper presents AutoBlackTest,
a technique to automatically generate test cases at the system level. AutoBlackTest uses reinforcement
learning, in particular Q-learning, to learn how to interact with the application under test and stimulate its
functionalities. When used to complement the activity of test designers, AutoBlackTest reuses the informa-
tion in the available test suites to increase its effectiveness. The empirical results show that AutoBlackTest
can sample better than state of the art techniques the behaviour of the application under test and can reveal
previously unknown problems by working at the system level and interacting only through the graphical user
interface. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

GUI testing consists of testing applications through their graphical user interface (GUI). GUI testing
is usually a manual activity and often concerns with the execution of system and acceptance test
cases. Automatic test case generation has been largely investigated for many tasks, including unit,
regression and model-based testing [1–3], but less thoroughly for GUI testing yet.

This paper considers interactive applications, that is applications that serve the requests of users
who interact with the applications through a GUI. State of the art testing approaches of interactive
applications are either black-box or white-box. Black-box techniques work in two steps: they first
generate a model of the event sequences that can be produced by interacting with the GUI of the
application under test and then generate a set of test cases that cover the sequences in the model
[4, 5]. Different techniques refer to different models and coverage criteria, such as covering system
events [6] or semantically interacting events [7].

White-box techniques use the information in the source code to generate test cases that cover
code elements. System testing must traverse many software layers, and white box techniques exploit
some heuristics to tackle the complexity of this task. Recent approaches in this category use either
search-based [8] or concolic techniques [9].

The effectiveness of black-box techniques depends on the completeness of the initial model. Since
the initial model is obtained by traversing the graphical interface of the application using simple
sampling strategies, complex GUIs seriously limit the effectiveness of these techniques. On the other
hand, white-box approaches suffer from the complexity of the source code.
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This paper presents AutoBlackTest, a black-box test generation technique that does not rely on an
initial model but builds the model and produces the test cases incrementally, while interacting with
the application under test. AutoBlackTest discovers the most relevant functionalities and generates
test cases that thoroughly sample these functionalities by exploiting Q-learning [10] to turn the
problem of generating test cases for an unknown application into the problem of learning how to act
effectively in an unknown environment.

This paper extends previous work [11] by

! Defining a mechanism that reuses the information in existing test suites to improve the
effectiveness of AutoBlackTest;
! Defining a mechanism for using test data based on the values expected by input widgets;
! Integrating and empirically investigating a new action selection policy;
! Empirically investigating the effectiveness of AutoBlackTest when different types of initial test

suites are available.

The paper is organized as follows. Section 2 overviews the AutoBlackTest technique, provides the
background information about Q-learning necessary to understand the rest of the paper and describes
how Q-learning is integrated in AutoBlackTest. Section 3 describes the Q-learning infrastructure
that is composed of the Observer, the Behavioural Model, the Executor, the Learner and the Planner.
Section 4 describes how to use existing test suites to initialize the Q-learning model and improve
the effectiveness of AutoBlackTest. Section 5 describes how to synthesize the concrete test cases
that can be reexecuted by testers over time and discusses the types of failures that can be revealed
with AutoBlackTest. Section 6 presents a prototype implementation of AutoBlackTest and discusses
the empirical results obtained with the prototype implementation on various case studies. Section 7
discusses related work. Section 8 summarizes the main contributions of the paper.

2. AUTOBLACKTEST

AutoBlackTest is a testing technique that automatically generates test cases for interactive appli-
cations. An example of interactive application is the Universal Password Manager (UPM)‡, an
application for storing and handling user names, passwords, URLs and generic notes in a local or
remote database. UPM interacts with the users through a main window that opens at the start-up of
the application, and a few additional windows designed to handle specific situations. AutoBlackTest
can generate system test cases for UPM by simulating user interactions. For instance, AutoBlack-
Test can automatically generate a test that creates a new account on UPM by clicking on the button
that opens the window for the creation of new accounts, entering some text in the fields displayed
in the newly opened window and pressing the ok button. UPM will be used as a running example
through the paper, since it represents well the target application domain of AutoBlackTest and is
simple enough to be easily discussed.

AutoBlackTest generates test cases by means of a component called Test Case Selector that elab-
orates the output of a Q-learning agent [10]. Although AutoBlackTest can be applied without any
a priori knowledge of the system under test, its effectiveness can be improved by providing an ini-
tial test suite with test cases that indicate how to use the most relevant functions of the application.
Figure 1 shows the main components of AutoBlackTest.

The Q-learning agent interacts with the application under test to identify and pursue executions
that result in relevant computations, such as computations that add, modify and eliminate accounts
in UPM. The Q-learning agent works incrementally by selecting an action to execute on the target
GUI, executing the action, observing the reaction of the application that consists of a new state of
the GUI and incorporating this information in a model that the Q-earning agent exploits to decide
the next action to execute. The model represents the knowledge about the application that has been
acquired by the agent and is incrementally extended during the testing process. The Q-learning agent
executes a fixed number of actions before starting a new sequence of actions from a random state,

‡http://upm.sourceforge.net/.
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Figure 1. The overall structure of AutoBlackTest.

selected from the ones that have been already visited by the agent. The sequence of actions executed
before starting a new one is called an episode.

The behaviour of the Q-learning agent is disciplined by two main parameters: the length of the
episodes and the duration of the testing process. The length of the episodes is the number of actions
that the Q-learning agent executes before stopping an episode and starting a new one. The duration
of the testing process is the time that the agent allocates to explore the interface and build the model.
At the end of the exploration, the Test Case Selector synthesizes a test suite, which includes a small
and nonredundant set of episodes that can be used to validate future revisions of the application
under test.

When test suites designed by testers are available, AutoBlackTest takes advantage of the available
test cases in two ways. First, it executes the test cases to produce an initial model of the application.
This initial model includes states and interactions that are relevant according to the testers’ view-
point. AutoBlackTest uses this model as a starting point for generating test cases. In this way, many
relevant states and interactions do not need to be discovered because they are already in the model,
and AutoBlackTest can focus its activity on generating relevant variations of the cases already sam-
pled by the test suite. Second, AutoBlackTest populates its data set with the input values that occur
in the test suite. This strategy produces a data set with values that are meaningful for the application
under test. During testing, AutoBlackTest uses the values in the data set to fill input widgets. When
an initial test suite is not provided, AutoBlackTest initializes the data set with a set of default values
manually specified by the tester.

2.1. Q-learning in a nutshell

Q-learning [12] is a well-established reinforcement learning technique in which an agent learns how
to act optimally in an environment through trial-and-error interactions. At each interaction, the agent
performs an action, based on the current state of the environment, and evaluates the consequences
of that action in terms of its immediate reward. The overall goal is learning how to act in a way that
maximizes the cumulative reward, that is maximize the reward that is collected when executing an
entire sequence of actions.

More formally, let S and A be the set of the possible states of the environment and the set of the
actions that can be executed by the agent, respectively. In Q-learning, the agent interacts with the
environment at some discrete time scale t D 0; 1; 2; : : :. At each time step t , the agent monitors the
current state of the environment st 2 S , uses this state information to choose an action at 2 A and
executes it. As a consequence, the environment reaches a new state and the agent collects a reward.
The reached state and the reward depend only on the previous state and the executed action. The
state transition function is represented with the function ı W S " A ! S , and the reward function
is represented with the function reward W S " A ! R. Executing an action at in the state st
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brings the environment in a new state stC1 D ı.st ; at / and collects a reward rt D reward .st ; at /.
The transition function ı and the reward function reward characterize the environment and are not
necessarily known to the agent.

The task of the agent is to learn an action-value function Q W S " A ! R that returns, for any
combination of state st and action at , the best cumulative reward that can be achieved by executing
a sequence of actions that starts with at from st . The complete knowledge of the Q function can be
exploited by the agent to behave optimally, by executing the actions that return the best cumulative
reward.

The Q-function is recursively defined as follows:

Q.st ; at / D reward.st ; at /C ! max
atC1

Q.ı.st ; at /; atC1/ (1)

where the discount-rate parameter ! is a real value in the range Œ0; 1/ and is used to balance the
relevance of the immediate reward with respect to future rewards: a value close to 1 assigns higher
weight to future rewards, while a value close to 0 assigns higher weight to immediate rewards.

The recursive definition of Q provides the basis for an algorithm that iteratively approximates it.
In particular, theQ function is learnt incrementally based on the experience of the agent. The initial
Q-value for each state-action pair is assigned with a user-defined default value. Then every time the
agent executes an action at from a state st , the Q-value is updated according to the following rule:

OQ.st ; at / OQ.st ; at /C ˛
h
rt C ! max

a
OQ.stC1; a/ # OQ.st ; at /

i
(2)

where the symbol OQ indicates the current estimate of the actual Q-function, ˛ is the learning rate,
which is a real value in the range .0; 1" that represents how strongly the new observation must
affect the estimated Q-values, stC1 is the state reached after the execution of at and rt is the reward
obtained with the execution of at .

Even though the equation (1) defines Q in terms of the functions ı.s; a/ and r.s; a/, the agent
does not require to know these functions to apply the updating rule (2). In fact the updating rule
is based only on the observation (i.e. on the sampling) of the traversed states st and stC1 and the
immediate reward rt .

To incrementally update the estimate of the actual Q-function, the agent must interact with the
environment according to a policy. In principle, the agent could always randomly select the action to
be executed among the ones that can be executed from the current state. In the long term, this policy
results in a uniform exploration of the execution space, but with very slow convergence. An alter-
native approach consists of exploiting the estimated Q-values by always executing the action with
the highest Q-value. However, this policy may restrict the exploration to the actions that are found
during the early activity of the agent, failing to explore other actions that could have even higher
Q-values. For this reason, the common policies adopted in Q-learning are based on probabilistic
approaches: the actions with higher Q-values are assigned with higher probabilities, so as to exploit
what the agent has already learned, but every action is anyway assigned with a nonzero probability,
to keep exploring alternative actions.

The Q-learning algorithm is guaranteed to converge to the true Q-function if applied to a
Markovian environment, with a bounded immediate reward and with state-action pairs continually
updated [13].

The interested reader can refer to the studies by Sutton et al. [10] and Watkins [12] for additional
details on Q-learning.

2.2. Q-learning agent

The Q-learning agent is an instance of Q-learning [10] where the Observer, the Learner, the Planner
and the Executor have been designed to address the problem of generating test cases for inter-
active applications. The architecture of the Q-learning agent matches the architecture of a classic
autonomic component [14], as shown in Figure 1.

The Q-learning agent executes episodes sequentially. When executing a new episode, the Q-
learning agent randomly selects a state from the visited ones and starts executing the episode from
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the selected state (the states represent the GUI states of the application and are incrementally
included into the model; the first episode is executed from the initial state of the application). If an
initial test suite is available, the choice of the state to start from is restricted to one of the states vis-
ited while executing the initial test suite. The intuition is that the set of states visited while executing
the initial test suite should be preferred because they include many relevant states that cover impor-
tant behaviours of the application, at least according to the rationale of the testers who generated
the test suite, while the distribution of the states dynamically discovered by AutoBlackTest can be
biased by the Q-learning process.

The Q-learning agent brings the application into the selected state by executing the shortest
sequence of actions that has been executed in any of the previous episodes to reach that state. Since
the selected state is in the model, it is guaranteed that at least one sequence exists. The behaviour
of the application along the executed sequence may be nondeterministic. If the sequence does not
bring the application into the desired state, AutoBlackTest starts the episode from the reached state.

Starting the execution of an episode from one of the visited states is a standard assumption of Q-
learning algorithms, and it is useful to increase the likelihood of exploring the whole space, in our
case the execution space of the application under test. In fact, if every episode is started from the
initial state, the agent could not reach the states that require the execution of a number of actions
greater than the maximum length of an episode.

The Q-learning agent iteratively determines an action to execute in four steps. In step 1, the
Observer analyzes the GUI of the application and extracts an abstract representation of the current
state that is passed to the Learner. In a nutshell, the representation of the state is the collection of
the property values of the GUI widgets of the applications. In step 2, the Learner updates the model
according to (i) the state reached during the execution, (ii) the action that has been executed and (iii)
the immediate utility of the action, accordingly to the formula (2). In step 3, the Planner applies a
policy, based on the behavioural model, to select the next action to execute. In step 4, the Executor
executes the action selected by the Planner, the application reaches a new GUI state, and a new
iteration starts.

Under specific conditions, the Q-learning process converges to an optimal solution [13]. In our
case, the condition that each state-action pair is continually visited does not hold, since the Q-
learning agent can only explore (i.e. test) a portion of the entire execution space of an application
due to the limited availability of the testing time. Thus, this paper aims to define an effective
short-term exploration strategy, without focusing on convergence. The empirical results presented
in Section 6.2 demonstrate that AutoBlackTest is effective despite the lack of convergence.

3. Q-LEARNING AGENT INFRASTRUCTURE

This section discusses in detail the main components of the Q-learning agent that is composed of
the Observer, the Learner, the Behavioural Model, the Learner and the Planner.

3.1. Observer

The Observer accesses the application under test to build an abstract representation of its actual
state. Ideally, it would like to precisely represent the state of the application, but in practice, it is
hard to access the internal state of an application; even when it is possible to access it, it is usually
too big and complex to be handled effectively. The Observer addresses this issue by approximating
the state of the application with the portion of the state that is visible to the users, that is the GUI
state. The state extracted by the Observer is used as part of the model maintained by the Learner.

The Observer implements a function that takes a concrete GUI state as input and produces an
abstract state as output. A concrete GUI state consists of a collection of widgets ¹w1; : : : wnº. Each
widget wi is a pair .typei ; P i /, where typei is the type of the widget and P i D

®
pi1; : : : ; p

i
ni

¯
is a

set of properties. Each property pij D
°
nij ; v

i
j

±
is a pair, where nij is the name of the property and

vij is the value of the property.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr



L. MARIANI ET AL.

Each widget is usually associated with a large number of properties and including all the prop-
erties in the state information would produce huge state representations. The Observer reduces the
size of the state by means of an abstraction function prj that transforms a concrete state S into an
abstract state AS , AS D prj.S/. The function prj is a projection that is applied to every widget
in the state S , prj.S/ D ¹prj.w1/; : : : ; prj.wn/º. Given a widget wi D .typei ; P i /, prj extracts
a subset of its properties, that is prj.wi / D .typei ; P

0
i /, where P 0i % Pi . For each widget wi , the

subset of properties P 0i is selected according to the widget type typei .
Table I shows a sample GUI state of the UPM application (top) and the corresponding abstract

state computed by the Observer (bottom). The abstract state consists of the five widgets (W1-W5)
that belong to the UPM window and a subset of their properties. The prj function extracts from
each widget a set of properties that characterize the widget type.

For instance, the projection function selects the properties uIClassID, text and editable
for the Password field (widget W3) that belongs to the UPM window shown in Table I. Auto-
BlackTest currently supports about 40 types of widgets and covers most of the elements that are
incorporated in a GUI. In the infrequent case of an unsupported widget, AutoBlackTest extracts a
standard set of properties that includes class and uIClassID.

The abstraction mechanism reduces the size of the model that the agent can explore by ignoring
the widget properties that are considered irrelevant to represent the behaviour of the application. For
instance, the abstraction mechanism ignores the property that specifies the color of a button because

Table I. An example of state abstraction of the UPM application.

Concrete GUI State

Abstract State

widget type property name property value

W1 BUTTON
uIClassID ButtonUI

text OK
enabled true

W2 BUTTON
uIClassID ButtonUI

text Cancel
enabled true

W3 PASSWORD FIELD
uIClassID PasswordFieldUI

text null
editable true

W4 LABEL
uIClassID LabelUI

text Please enter the master
for this database

W5 LABEL uIClassID LabelUI
text null

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
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this property is both likely constant within a testing session and unlikely to influence the behaviour
of the application.

The fact that a same abstract state may correspond to multiple concrete states does not represent
an issue for AutoBlackTest as long as the concrete states react to the actions executed by the agent in
the same way. The case of two concrete states with a different behaviour that are mapped to a same
abstract state may introduce a local instability of the Q-values. This local phenomenon does not
represent a problem for the overall exploration of the application, unless these cases are extremely
frequent in the model. In this worst case, the effectiveness of AutoBlackTest is roughly reduced
to the effectiveness of a random exploration of the application. Although this case is theoretically
possible, in the practice it may happen only for the applications that exploit in an unusual way many
of the properties in their widgets. This case has never occurred in the experiments carried out in
this study.

Besides extracting an abstract representation of the GUI state, the Observer checks if the same
widgets occur in multiple GUI states, possibly with some modified properties. The Observer iden-
tifies occurrences of the same widget in multiple states by comparing the widget in a GUI with the
widgets represented in the states of the behavioural model. To detect multiple occurrences of the
same widget, AutoBlackTest uses a function that generates traits from widgets. A trait is a sub-
set of the widget properties that are expected to be both representative and invariant for the given
widget. More formally, given a widget wi D .typei ; P

i /, t rait extracts a subset of its properties,
that is t rait.wi / D .typei ; P

0
i /, where P 0i % Pi . For each widget wi , the subset of the properties

P 0i is selected according to the widget type typei . Traits are used to recognize a same widget even
if some of its characterizing properties are changed. For instance, the trait of a button includes its
type (for instance, Button), the position of the button in the GUI hierarchy and the label visu-
alized on the button (for instance ‘OK’). Given two widgets w1 and w2, the equality w1 Dt w2
is valid iff trait.w1/ D trait.w2/. This strategy is similar to a feature offered by IBM Functional
Tester to compare widgets [15]. Based on this definition, the following restriction operator between
abstract states that will be used in the next sections can be defined: given AS D ¹w1; : : : ; wnº,
AS0 D ¹w01; : : : ; w0n0º abstract states, AS nt AS0 D ¹wi jwi 2 AS ^ Àw0k 2 AS0s:t: wi Dt w0kº.

3.2. Learner and behavioural model

The Learner builds and updates the behavioural model according to the activity of the Agent. The
behavioural model is defined as a tuple that incorporates the result of Q-learning. More formally,
the behavioural model is a tuple .AS; A; ı; reward;Q/ where AS is the set of the abstract GUI states
of the application returned by the Observer, A is the set of actions that can be executed on the
application, ı W AS " A ! AS is the state transition function, reward W AS " A ! R is the reward
function and Q W AS " A! R is the estimated Q-function.

The behavioural model can be visually represented with a multidigraph that is a graph where pairs
of nodes can be connected by multiple directed edges. Nodes represent the abstract states AS , while
edges represent actions in A and connect nodes according to the transition function ı. Edges are
annotated with the values of the reward and the Q-value, returned by the reward and Q functions,
respectively. Every time the Agent observes a new state or executes a new action, it extends the
behavioural model accordingly.

The Q-value that annotates edges represents the likelihood that the corresponding transition
causes or enables complex interactions with the application, which can be extremely useful for sys-
tem testing. As usual in the Q-learning process, the Learner assigns a Q-value to a transition after
executing the action that corresponds to the edge. The Learner computes the Q-value according to
both an immediate utility value and the Q-values of the actions associated with the edges that exit
the state reached with the current edge (see formula 2 in Section 2.1).

In the following, the reward function that computes the immediate utility of an action is first
presented, and then the computation of the Q-values is discussed.

The value of actions with respect to testing depends on the computations activated by the actions.
The reward function favours actions that activate relevant computations and penalizes actions
that activate marginal computations. To heuristically identify the actions that trigger the relevant
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computations, the reward function assigns high reward values to the actions that induce many
changes in the abstract GUI state and low reward values to the actions that induce few changes in
the abstract GUI state.

For example, the form shown at the top of Figure 2 is the form for creating new accounts in UPM.
If AutoBlackTest clicks the OK button, a new account is created and a new window is displayed (left-
bottom corner of Figure 2). Intuitively, the major change on the displayed widgets corresponds to an
execution that is immediately relevant for testing: a new account has been created. On the contrary,
if AutoBlackTest clicks the Hide check box, the new GUI state is only marginally different from
the previous state (right-bottom corner of Figure 2). Intuitively, the small difference in the GUI state
corresponds to an interaction that produced an execution with small immediate relevance for testing.

The heuristic is effective but not perfect. However, the randomness in the exploration process that
starts episodes from random states and executes random actions frequently prevents the agent from
wasting resources in uninteresting areas of the execution space, due to exceptional cases that violate
the heuristic.

To define the reward function, the diffw function is introduced. This function computes the degree
of change of a same widget when observed in two different states and the diff AS function that
computes the degree of change between two abstract states.

Given two widgets w1 D .type; P1/ and w2 D .type; P2/, such that w1 Dt w2, the diffw
function computes the proportion of properties that changed their value:

diffw.w1; w2/ D
jP1 n P2j C jP2 n P1j

jP1j C jP2j
(3)

Given two abstract states AS1 and AS2 in this order, diff AS computes the fraction of widgets that
have changed from AS1 and AS2, taking into account both the widgets that occur only in the target
state AS2, and the ones that occur in both states with modified properties, but ignoring the widgets
that disappear from the original state AS1:

Figure 2. An example of actions of the UPM application.
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diff AS.AS1;AS2/ D
jAS2 nt AS1j C

P
w12AS1;w22AS2;w1Dtw2 diffw.w1; w2/

jAS2j
(4)

The reward function is now defined. Given an abstract state AS1 and an action a executed
from AS1, the state reached by executing a from AS1 is defined with ı.AS1; a/. The reward of the
action is the proportion of new widgets and widgets that changed their properties from the original
to the target state: reward.AS1; a/ D diff AS.AS1; ı.AS1; a//. The widgets that disappear when mov-
ing from the original to the target state are not considered to avoid incrementing the Q-values too
quickly when actions change the windows. When the increments of Q-values are too fast, the activity
of the agent tends to focus too much on the actions that cause the big increments, in this case transi-
tions between windows, ignoring the windows themselves. In the context of testing, this behaviour
corresponds to spending more time in testing transitions between windows rather than testing func-
tionalities. Moderate increases of the Q-values lead to better exploring the state space and thus to a
testing activity that balances transitions between windows with executing functionalities.

The reward function defined above can estimate well the immediate utility of an action but does
not take into account the utility of that action when executed as a part of a sequence of actions.
Sometimes a simple action that produces a transition between similar states, for example filling
a text area, can enable the execution of actions that produce transitions between largely different
states, for example successfully submitting a form. A testing process that aims to execute valuable
computations needs to identify these transitions that potentially enable actions that induce large
state changes later on. Q-learning captures these characteristics by annotating transitions with Q-
values that represent the values of the actions computed by considering both the immediate utility as
defined by the reward function and the utility of the actions that can be executed in the future [10].
Considering the reward of future actions allows the agent to effectively go explore situations that
require executing some preliminary actions to enable the execution of the action relevant for testing.
At each step, the Planner uses the Q-values to choose the action to be executed.

The role of the Q-values is exemplified in the model shown in Figure 3. The model is a simplified
excerpt of the model of the UPM application. For the sake of simplicity in the figure, the states are
labelled with the name of the UPM windows (instead of the collection of widget properties) and the
transitions with the type of the widget (instead of its identifier) followed by the name of the action
(omitting the parameters).

The path through the states 00, 01, 10, 11, 02, 03, 14 represents the case of a user who
tries to import a remote database of passwords by (i) selecting the Open Database From
URL command from a menu, (ii) setting the address to connect to the remote database from the
ConnectionSetting window, (iii) clicking on an existing database in the FileChooser
window, (iv) clicking the Save button and (v) confirming the intention to overwrite the existing
database. The path reaches an error state because it corresponds to an attempt to connect to a remote
database without specifying a correct communication protocol. The edges are labelled with (i) the
action that triggers the transition between the states, (ii) the Q-value (Q:) and (iii) the Reward value
(R:) of the corresponding action. The transitions with bold labels indicate that the Learner can
assign high Q-values both to actions with high reward value (for instance, selecting the File menu,
which enables interesting scenarios) and to actions with low reward value (for instance, selecting an
existing database, which does not produce relevant computations, but enables the overwriting of an
existing database).

Q-learning can also effectively identify alternative paths. For instance, the action
ListUI.doubleClick() in Figure 3 has a high Q-value because it combines the selection of
an existing file and the click of the Save button into a single action and terminates with the same
state obtained by executing the entire sequence.

The Learner computes Q-values starting from the reward values according to the standard Q-
learning formula for ˛ D 1 and ! D 0:9. Since the learning rate ˛ determines the impact of the new
observations on the model and AutoBlackTest needs to quickly learns how the tested application
behaves, the value 1 is selected to produce the greatest impact on the model at each interaction. Since
the discount factor ! balances the relevance of the immediate reward with respect to future actions
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Figure 3. Excerpt of a model derived with AutoBlackTest.

and AutoBlackTest aims to execute sequences of actions that maximize the reward collected during
an entire episode, rather than maximizing the immediate reward, the value 0.9 has been selected.
Other studies in Reinforcement Learning [16, 17] confirm that ! D 0:9 produces highly effective
results. The resulting formula is

Q.s; a/ D reward.s; a/C 0:9max
a0
Q.ı.s; a/; a0/ (5)

where ı.s; a/ is the state reached by executing the action a from the state s, Q.ı.s; a/; a0/ indicates
the Q-value associated with the action a0 when executed from the state ı.s; a/ and reward(s,a)
indicates the immediate reward of the action a executed from the state s.

When an action reaches a new state, the second term of the formula is zero and the Q-value is
the reward value. Otherwise, the Q-value is computed according to both the reward value and the
Q-values of the edges exiting the target state.

The Learner applies the formula to update the Q-value every time an action is executed.

3.3. Planner and executor

The Planner selects the action executed at each iteration according to a policy. In AutoBlackTest,
two popular policies used in Q-learning were considered: the #-greedy [16, 17] and the softmax
policies [10].

The #-greedy policy consists of selecting either a random action among the ones executable in
the current GUI, with probability #, or the best action that is the action with the highest Q-value
according to the behavioural model available to the agent, with probability 1 # #. The value chosen
for # can impact significantly the effectiveness of the technique.

The softmax strategy consists of choosing the action according to a probability distribution
that depends on the Q-value of the actions. The softmax strategy depends on a parameter that

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr



AUTOMATIC TESTING OF GUI-BASED APPLICATIONS

influences the probability distribution. This parameter can be assigned with a value in the range
Œ0::1", where low values of the parameter strongly favour the actions with high Q-values over the
action with medium or low Q-values, while high values of the parameters result in a uniform
probability distribution, regardless of the distribution of the Q-values.

A suitable policy (either #-greedy or softmax) and a suitable value for its parameter were deter-
mined by empirically comparing the performance of AutoBlackTest when using the two policies
under different configurations. The empirical study reported in Section 6.2 shows that the 0.8-greedy
policy produces the best results.

The Planner distinguishes between simple and complex actions. A simple action is a single event
triggered on a widget. A complex action is a workflow of simple actions orchestrated heuristically.
Complex actions are defined to face specific situations effectively.

For instance, if the same window displays several widgets that accept data values, the planner
can select the complex action fillForm that fills out all or most of these widgets before clicking
a button. The rationale of the action is that to process the data entered through the widgets that
comprise the form is likely necessary to fill out most of them; otherwise, the data entered in the
window are likely to be insufficient. In principle, it is possible to obtain the same result combining
several simple actions, but the time needed to learn how to fill the widgets and then clicking on the
submit button may be undesirably long.

A complex action is characterized by an enabling condition that specifies the condition under
which the complex action can be executed and that consists of a set of constraints on the number,
type and properties of the widgets that must occur in the windows. If all the constraints evaluate to
true, the Planner can select the complex action.

When the Planner selects a random action, it behaves differently depending on the available
actions and on the availability of an initial test suite. If an initial test suite is available, the Planner
uses only simple actions, since the sequences of actions necessary to interact with complex win-
dows, like in the case of a complex form with multiple dependencies between input widgets, are
already available to the agent in the form of the model produced from the initial test suite. Thus,
AutoBlackTest mainly produces variations of existing cases and seldom faces a completely new sit-
uation. If no initial test suite is available, every window that is accessed for the first time is a new
situation for AutoBlackTest, and thus, AutoBlackTest considers both simple and complex actions.
When both simple and complex actions are executable in the current state, the Planner selects a
complex one with a probability of 75%, as empirically determined through experiments.

The Executor interacts concretely with the widgets and is activated to execute either a sim-
ple or a complex action. In the following, the simple and complex actions currently supported by
AutoBlackTest are described.

Simple actions. A simple action is a single action executed on a single widget. Section 6.1 specifies
the set of supported widgets. Sometime actions require a parameter to be executed. For instance, a
textarea requires a text to be entered.

AutoBlackTest handles parameter values by exploiting a catalog of predefined literals that can be
used for testing. In particular, AutoBlackTest analyzes the GUI and automatically associates a label
that occurs in the GUI to each input widget available in the current window using the algorithm
described by Becce et al.[18]. The association rule is straightforward and takes advantage of the
GUI design principles. In most of the cases, it consists of associating an input widget with the closest
label that occurs in the GUI. For instance, AutoBlackTest can discover that name, birthday and
address are the labels that describe the data expected in three text areas.

The catalog of predefined literals that can be used to support testing is organized according to
a set of user-defined labels. The catalog may contain names, dates, addresses and so on. When
AutoBlackTest needs a parameter value for a simple action, it first checks if the label that describes
the input widget belongs to the catalog. If it does, AutoBlackTest randomly selects a value from the
set of values associated with the label found in the catalog. If the label does not occur in the catalog,
AutoBlackTest uses the predefined string genericstring.

The catalog can be both manually populated with legal, boundary, illegal and special values, and
automatically populated by reusing values from existing test cases. Manually populating the catalog
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is an interesting option for the testers who can specify the data that AutoBlackTest must use to test
a specific application. The effort necessary to manually populate a catalog depends on the testers’
experience and their knowledge of the application under test.

Complex actions. Table II specifies the complex actions currently supported by AutoBlackTest.
For each action, the table reports the name of the action, the situation faced by the action, the con-
ditions that enable the action and the behaviour of the action. When a complex action executes
an action that requires a parameter, it exploits the catalog of predefined literals available to
simple actions.

4. INITIAL TEST SUITE

AutoBlackTest can be used both in presence and absence of test cases. When test cases are available,
AutoBlackTest takes advantage of them by reusing both the parameter values and the test sequences.

When reusing the parameter values, AutoBlackTest scans the test cases, extracts the input values
defined by the test designers and stores these values in a catalog of values that is used to generate
new test cases. When storing values, AutoBlackTest takes advantage of its ability to associate labels
with widgets to classify the parameter values. For instance, if a test case enters the literal John in
a textarea associated with a label name and the literal New York in a textarea associated with a
label city, AutoBlackTest classifies the literal John as a name and the literal New York as a
city and reuses them only with widgets associated with labels name and city, respectively. The
reuse of parameter values is a way of feeding the catalog with literals specifically meaningful for
the application under test.

The reuse of test sequences consists of computing an initial model that is used as starting point
for the AutoBlackTest testing activity. AutoBlackTest computes this initial model by executing the
test suite and monitoring the program execution.

The execution of each test case produces a model with the states that have been visited, the actions
that have been executed and the Q-values as the reward computed for each executed action of the
discovered states. As an example, Figure 4(a) shows the models that AutoBlackTest computes when
executing two test cases for the UPM application.

Executing a valuable and highly rewarded functionality (e.g. submitting a request) often requires
executing several actions with a small reward (e.g. filling the many fields of a form). For instance,
the TextFieldUI.setText() action from state 2 to state 3 in the test TC1 shown in Figure 4(a)
defines the name of the newly created database and has a small reward (0.008). However, such
an action is necessary to successfully execute the next action ButtonUI.click() that saves
the database and has a high reward (0.471). The different reward of the actions is reflected in the
Q-values.

The occurrence of highly valuable actions does not impact on the Q-value of the actions executed
earlier in the test. This is due to the lack of propagation of the Q-values that in Q-learning happens
when the same actions are executed multiple times. To maximize the benefits of the available test
cases, the information about highly rewarded actions are propagated up to the root of the test case,
so that the model can be exploited to take decisions that are effective on the long-term execution of
the test cases.

The Q-values are propagated by updating the Q-values on every action of the test as many times
as the length of the test (i.e. the number of actions that have been executed). In this way, the
reward produced by every action influences the Q-value of every other action in the model, in a
way that is proportional to the distance between actions. The propagation strategy applied to the
test cases in Figure 4(a) returns the models in Figure 4(b). In the new models, the rewards of late
actions influence the Q-values of the early actions. For instance, the Q-value of the aforementioned
textFieldUI.setText() action increases from 0.008 to 0.681.

AutoBlackTest produces the initial model by merging the models of the single test cases. The
merging is straightforward: the states of the initial model are the union of the states of the test
models, and the transitions are mapped from the test models to the initial model consistently. There
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Table II. Complex actions currently supported in AutoBlackTest.

Action name Situation Enabling condition Behaviour

File Chooser

This action is designed to inter-
act with an open/save window
(which is a standard modal win-
dow provided by most GUI
frameworks). The action aims to
limit the scope of the interaction
with the file system and produce
legal file names.

The action detects
the open/save win-
dow by checking
if the name of the
class that imple-
ments the window
matches one of the
known open/save
windows classes.

This action executes a random sequence
of simple actions with the following
constraints: it does not allow to move
up in the folder hierarchy before com-
pleting the action and requires to enter
filenames from a predefined set of
valid filenames.

Color Chooser

This action is designed to inter-
act with a color choosing win-
dow (which is a standard modal
window provided by most GUI
frameworks). The action aims to
support the particular grid that is
displayed in this kind of window,
and that would not be usable with
simple actions.

The action detects
the color choosing
window by check-
ing if the name
of the class that
implements the
window matches
one of the known
color choosing
classes.

This action can click either the color in
the centre of the grid or a color at
the side of the grid. After the first
click, this complex action clicks the
ok button. If, instead of returning in
the underlying window, a new win-
dow is opened, the action assumes
that the window is an error window,
closes the new window first and clicks
the cancel button in the color chooser
window.

Fill Form

This action is designed to inter-
act with form-like windows. The
rational for this action is that
form-like windows often require
filling many/all the widgets with
some data before clicking an
ok button to activate the corre-
sponding functionality. Relying
on a lucky combination of simple
actions to obtain a sequence that
fills most widgets before clicking
a button is unrealistic.

The action identifies
a form-like win-
dow by checking
if at least eight
widgets that allow
entering data (wid-
gets that consist
of textArea,
comboBoxes,
Trees, etc.) and
a button are active
in the current
window.

This action can have six behaviours
obtained by combining the value of
two parameters. The first parameter
represents the percentage of the wid-
gets that allow entering data to be
filled and can be assigned with 50%,
75% and 100%. The second param-
eter is a boolean value that indicates
whether the complex action should
end by clicking the ok button, or
should continue with the regular exe-
cution, without clicking the ok button.

HandleList

This action is designed to interact
with a listbox in a way richer than
executing a simple action. This is
needed to select multiple items in
listboxes.

This action is
enabled if a listbox
that allows select-
ing multiple items
is active in the
current window.

This action can have three behaviours. It
can select two, half of or all the items
in the list.

Compund<*>

This action represents a family of
complex actions. We use the sym-
bol <*> to indicate any kind of
widget that allows to input data.
This action is used to interact
with windows that display mul-
tiple widgets of the same kind.
The hypothesis is that it is likely
necessary to fill many of them to
activate an interesting computa-
tion. For instance, if a window
displays several comboBoxes,
it is likely necessary to make a
choice for most of them to run the
underlying function.

This action is acti-
vated if at least
3 widgets of
the same kind
are active in the
current window.

This action can have three behaviours.
It can fill 50%, 75% or 100% of the
widgets.
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Figure 4. (a) The models produced by executing two test cases of the UPM application. (b) The models
obtained after propagating the Q-values.

is only one case of possible conflict that occurs when a same action from a same state occurs in
two different test models with different Q-values. In this case, the initial model include the action
with the maximum Q-value, following the rationale that the maximum Q-value represents the best
opportunity that exists in one of the possible continuations of the execution.

The sample test models in Figure 4(b) include a case of conflict. The action MenuUI.click()
occurs from state 0 to state 1 in both test models but with different Q-values: 1.740 in TC1 and 1.679
in TC2. The different Q-values are originated by the different evolutions of the tests: one test creates
a new database, while the other opens a local database. To represent the best opportunity that the
agent has along the path that starts with MenuUI.click(), as required by Q-learning, the highest
Q-value, 1.740, is included in the initial model. Figure 5 shows the initial model obtained from the
test models in Figure 4(b).

5. TEST SYNTHESIS AND FAILURE DETECTION

This section discusses the synthesis of test cases and the failure detection capabilities of
AutoBlackTest.
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Figure 5. The initial model obtained from the test models in Figure 4(b).

5.1. Test case selector

The episodes that AutoBlackTest executes automatically during the testing process are test cases.
These test cases can be stored in an executable form, for instance to support regression testing.
Since AutoBlackTest records every information necessary to replicate the execution of an episode,
the generation of executable test cases is straightforward. The current prototype implementation of
AutoBlackTest generates test cases executable with IBM Functional Tester.

Episodes that execute the same sequences of actions are redundant. To produce a nonredundant
test suite, the Test Case Selector filters the set of episodes following the additional statement cov-
erage prioritization approach [19]: AutoBlackTest selects the episode with the highest statement
coverage, adds it to the test suite, recomputes the marginal coverage of the remaining episodes and
proceed by selecting a new episode until no episodes further contribute to code coverage. Episodes
that do not contribute to code coverage according to this process are classified as redundant and
discarded.

The test cases discarded according to this strategy might carry some useful information even if not
contributing to the coverage. When storing a large test suite with a long execution time is acceptable,
this step can be skipped and all the episodes can be stored as tests.

5.2. Failure detection

AutoBlackTest can detect both domain independent failures, like crashes, hangs and uncaught
exceptions, and failures that cause violations of assertions, if available in the code. This section
describes how domain independent failures can be detected.

Crashes AutoBlackTest detects a system crash by recognizing that the target application is not
available anymore. It reports the sequence of actions that leads to the failure so that the fail-
ure (if deterministic) can be reproduced, interrupts the current episode and starts a new one
(starting a new episode implies restarting the application).

Hangs AutoBlackTest detects hangs by recognizing that the target application is available but
not responding to any actions. It reports the sequence of actions that leads to the failure so
that the failure (if deterministic) can be reproduced, interrupts the current episode and starts a
new one (restarting the application).
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Uncaught Exceptions AutoBlackTest monitors the standard output and error streams looking for
exceptions. If it reveals an exception, it produces a failure report that allows to replicate the
failing execution (if deterministic). Differently from the previous cases, it does not interrupt
the execution of the episode but continues executing actions until the current episode is com-
pleted. If the application under test writes to log files, AutoBlackTest can be configured to
monitor the content of the log files, in addition to standard output and error streams, and detect
exceptions.

Regressions When the test cases produced by the Test Case Selector are reexecuted to validate a
new version of the application under test, AutoBlackTest can use the failure detection mech-
anisms described by Xie et al. [20] that derive from the possibility of comparing the state
information recorded the first time the test is executed with the state information observed
during regression testing.

Xie et al. [20] shows that two effective oracles consist in (1) checking after the execution of each
action whether the state of the active window matches the state of the active windows recorded in
the test and (2) checking at the end of the test if the state of all the opened windows matches the
states of the windows recorded at the end of the execution of the original test. AutoBlackTest can
use both these oracles.

6. EXPERIMENTS

This section presents the prototype implementation of AutoBlackTest and the results of the empirical
evaluation.

6.1. Prototype

The prototype implementation of AutoBlackTest integrates two third-party components: IBM Ratio-
nal Functional Tester [15] and Teachingbox [21]. AutoBlackTest uses IBM Rational Functional
Tester both in the Observer to extract the widgets of the application and in the Actuator to inter-
act with the widgets. AutoBlackTest uses Teachingbox in the Learner to update the model of the
application.

The current implementation supports Java/Swing but can be easily extended to any GUI frame-
work supported by IBM Functional Tester, including JAVA, .NET and a number of other Windows
and Linux GUI frameworks, with small changes in the Observer and the Actuator.

Table III summarizes the current set of supported widgets, and the actions that AutoBlackTest
can execute on these widgets. The 18 widgets reported in the table are macro classes of widgets that
cover about 40 different specific widgets.

The tool is available for download at http://www.lta.disco.unimib.it/tools/AutoBlackTest/ and
requires IBM Rational Functional Tester to be installed and executed.

6.2. Empirical evaluation

AutoBlackTest was empirically evaluated by (1) studying the impact of the action selection
policy on the effectiveness of the technique, (2) comparing AutoBlackTest with state of the art

Table III. Simple actions currently supported in AutoBlackTest.

Widget Action

Label, ToolTip, Button click()
ToggleButton, Checkbox, RadioButton select(), deselect()
TextField, FormattedText, TextArea, write(text)TextPane, EditorPane, PasswordField
ComboBox, Tree, List, Table click(pos), doubleClick(pos)

click(elem), doubleClick(elem)
TabbedPane, Menu click(elem)
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GUI testing techniques and (3) investigating the impact of the initial test suite on the effectiveness
of AutoBlackTest.

6.3. Action selection policy

The impact of the action selection policy on the technique was investigated by using a small appli-
cation with a simple GUI to limit the influence on the results of external factors that may be difficult
to control in complex applications and keep the focus on the exploration strategies. The specific
application that was selected is UPM v1.6 (2.515 locs), and the application used as running exam-
ple. The effectiveness of the policies was evaluated by measuring the statement coverage obtained
after 12 h of activity with no initial test suites. Statement coverage is used as a proxy measure of the
exploration ability of the technique. High coverage would indicate that the technique can explore a
large part of the execution space indeed–low coverage may depend on different factors–but can be
interpreted as a symptom of potential problems. Each configuration was executed three times, and
the effectiveness of the two policies described in Section 3.3 was empirically investigated: #-greedy
and softmax.

Since Q-learning is more effective when a significant proportion of random actions are executed,
the effectiveness of the policies was investigated with values of # and temp close to 1. For both poli-
cies, the parameter influences the degree of randomness in the decision about the action to execute;
in both cases, when the parameter is equal to 1, the decision is purely random. The experiments
were conducted with values 0.6, 0.8, 0.9 and 1 for each of the parameters.

Table IV shows the average statement coverage obtained with each configuration. The data indi-
cate that the #-greedy policy outperforms the softmax policy and the random selection of the action
performs worst, while the other configurations perform well and reach the best results with # D 0:8
(in bold in the table).

Although these results are not final, the choice of the #-greedy policy with a value of # close to
0.8 is recommended when using AutoBlackTest. # D 0:8 is used as reference value for the rest of
the experiments.

6.4. Comparative evaluation

The capability of supporting system testing is estimated by measuring the statement coverage
obtained with AutoBlackTest, and by evaluating the ability of finding uncovered problems in the
target application. The results are compared with GUITAR v1.1.1 that represents the state of the art
in the field [6].

Four applications for desktop machines are selected as case studies for these experiments.
Applications from different domains already exploited in similar studies (see, for instance, the GUI-
TAR web page http://sourceforge.net/apps/mediawiki/guitar/) are chosen: UPM v1.6, a personal
password manager (2.515 locs); PDFSAM v0.7 stable release 1 (http://sourceforge.net/projects/
pdfsam/), a tool for merging and splitting PDF documents (3.138 locs); TimeSlotTracker v0.4
(http://sourceforge.net/projects/timeslottracker/), an advanced manager of personal tasks and activi-
ties (3.499 locs); and Buddi v.3.4.0.8(http://buddi.digitalcave.ca/), a personal finance and budgeting
program (10.580 locs).

In this empirical study, the two techniques are assumed to be used in overnight sessions, and the
results produced after 12 h of execution on an Intel i5 760 at 2.80 Ghz with 4GB ram are compared.
Since AutoBlackTest generates test cases incrementally, its execution was simply interrupted after
12 h of execution time. Any initial test suite was not provided to AutoBlackTest.

Table IV. Statement coverage obtained with different policies.

policy # D 0:6 # D 0:8 # D 0:9 # D 1
#-greedy 84% 87% 84% 81%

policy TEMP=0.6 TEMP=0.8 TEMP=0.9 TEMP=1
softmax 76% 80% 67% 81%
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GUITAR can generate multiple models. GUITAR was configured to use the Event Interaction
Graph (EIG) as model for test case generation, since it increases the fault detection effectiveness
of the generated test case, according to the authors [5, 22]. A few testing sessions were run with
different initial models to confirm that EIG is the best option.

GUITAR works by generating abstract test cases that are later turned into concrete test cases. The
generation process is influenced by the length of the abstract test cases, which are shorter than the
corresponding concrete test cases. Yuan et al. [5] suggest to use abstract test cases no longer than 10.
To find an appropriate length for the experiment, GUITAR was applied to the case studies looking
for configurations that terminates the test case generation in at most 6 h (50% of the budget). After
executing GUITAR on the target applications, it is found that the maximum value that can be used to
generate the test cases within the time limit for every application is 5 h. The remaining time, which
has never been less than 6 h with an average of 10 h, is used to execute the tests. GUITAR was not
able to interact with some frequently used windows in UPM (in particular the login window) and
Buddi (in particular the donate window) and most of the executions got stuck soon. Using GUITAR
as it is would have produced poor scores for these two case studies. To compare the two techniques,
the applications are slightly modified to let GUITAR proceeds when facing these two windows and
avoid getting stuck.

To reduce the impact of randomness in the experiments, AutoBlackTest and GUITAR were run
for three times on every application, and average results are reported. The following two subsections
report the results obtained for code coverage and fault detection.

Code coverage. Table V shows the statement coverage achieved in the experiments and the size
of the test suite automatically generated with AutoBlackTest and GUITAR. Statement coverage is
computed after eliminating the lines of code that are trivially unreachable, like the methods that are
never invoked by the application.

AutoBlackTest covered from 59% (PDFSAM) to 86% (UPM) of the statements, with an average
of 69%. These results show that AutoBlackTest samples well the behaviour of the applications.
AutoBlackTest outperformed GUITAR in every case study: GUITAR covered from 41% to 73% of
the statements, with an average of 55%. The code areas that GUITAR does not cover result from the
intrinsic limitation of using an initial model to generate test cases, as done in GUITAR, but not in
AutoBlackTest that builds its model by heuristically learning the shape of the execution space.

Figure 6 shows how AutoBlackTest incrementally increases statement coverage. As expected,
the amount of covered statements increases fast with early episodes, up to about episode 70, and
improves slowly afterwards (in each case study, the last 100 episodes increase coverage by about
5%). These results suggest that AutoBlackTest could be extended with an adaptive early termination
policy, in the presence of strong time constraints. For example, AutoBlackTest can be terminated
when the coverage has not increased more than a given threshold (for instance 2%) in the last N
episodes (for instance 50).

The AutoBlackTest test case selector successfully pruned the many executed episodes (about
180 in every case study) by eliminating redundant test cases and producing compact regression test
suites that can be reexecuted with IBM Functional Tester: for three out of the four applications,
the test case selector distilled less than 30 test cases that cover the same statements covered by the

Table V. Statement coverage achieved with AutoBlackTest and Guitar.

Application Technique Statement coverage Number of test cases

UPM AutoBlackTest 86% 27
GUITAR 73% 3456

PDFSAM AutoBlackTest 64% 28
GUITAR 53% 4500

TimeSlot
Tracker

AutoBlackTest 68% 14
GUITAR 55% 5140

Buddi AutoBlackTest 59% 52
GUITAR 41% 850
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Figure 6. Average increment of statement coverage along episodes.

Table VI. Number of faults revealed by AutoBlackTest and GUITAR.

AutoBlackTest faults GUITAR faults

Application Execution Severe Minor Total Severe Minor Total

UPM

ex 1 2 3 5 0 1 1
ex 2 4 4 8 0 1 1
ex 3 3 3 6 0 1 1
avg (tot) 6.3 (8) 1 (1)

PDFSAM

ex 1 0 1 1 0 0 0
ex 2 0 1 1 0 0 0
ex 3 0 1 1 0 0 0
avg (tot) 1 (1) 0 (0)

TimeSlot
Tracker

ex 1 1 3 4 0 1 1
ex 2 1 3 4 0 2 2
ex 3 1 3 4 0 3 3
avg (tot) 4 (5) 2 (4)

Buddi

ex 1 2 2 4 0 0 0
ex 2 1 3 4 0 0 0
ex 3 1 2 3 0 0 0
avg (tot) 3.6 (6) 0 (0)

180 episodes (17% of the episodes) and less than 60 test cases for the fourth application (33% of
the episodes). GUITAR covers less statements generating many more test cases, 850 in the best
case and 5140 in the worst case. Therefore, it is reasonable to conclude that AutoBlackTest is more
effective than GUITAR in synthesizing a smaller set of test cases with high code coverage (180
before selection and from 14 to 52 after test case selection).

Fault detection. The comparative evaluation of AutoBlackTest with GUITAR was completed by
examining the faults that AutoBlackTest and GUITAR detected automatically while running with
the configuration described above. Table VI shows the number of faults detected in each execution
distinguishing between severe and minor faults. Faults are classified as severe if they prevent the
execution of a functionality, minor otherwise. The average number of faults detected per execution
and the total number of faults detected across the three executions (row avg(tot)) are also reported.

AutoBlackTest detected faults in all applications: from 1 (PDFSAM) to 8 (UPM) faults. The faults
detected with AutoBlackTest were all present in the released applications. Moreover, 14 out of the
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20 detected faults are new faults not reported in the bug repositories of the analyzed applications.
GUITAR detected faults only in two applications: one fault in UPM and four in TimeSlotTracker.
From this empirical validation, it is possible to conclude that AutoBlackTest is more effective than
GUITAR in detecting faults when used in a 12 h time frame: AutoBlackTest detected a total of 20
faults, while GUITAR detected a total of five faults (four out of the five faults were also detected by
AutoBlackTest).

The results presented in this section indicate that AutoBlackTest can be useful both to automati-
cally test interactive applications and to support testers in detecting system level faults overlooked by
alternative verification activities. It is particularly interesting the ability of AutoBlackTest to detect
faults that can be revealed only through rare combinations of actions, as frequently happens for sys-
tem level faults. This ability depends on the capability of AutoBlackTest to exploit the alternation
of exploitation and exploration, which is typical of Q-learning. The readers should notice that the
faults that can be activated only through the execution of multiple system-level actions, as the ones
revealed by AutoBlackTest, can be hardly revealed with test cases designed to validate individual
units, like unit test cases, which focus on functionalities implemented by a single unit, rather than
on the integration of functionalities offered by multiple components of the system.

For instance, one of the faults detected in UPM leads to a failure only when a user first creates
two accounts with an empty account name and then deletes the second account. This sequence of
actions results in the impossibility of modifying the first account. Another interesting example is the
fault detected in PDFSAM where a specific combination of inputs in a form-like window produces
no response from the application. The lack of reaction from the application leaves the user with the
impossibility to know if a specified PDF file has been split or not.

In summary, AutoBlackTest effectively revealed faults that can be activated only by executing
specific sequences of actions, sometime in combination with specific data values. This ability is
clearly limited by the actions supported by AutoBlackTest and the values used to populate the
data set.

6.5. Impact of the initial test suite

AutoBlackTest can take advantage of the availability of an initial test suite as discussed in Section 4.
This section reports a study about the impact of different types of initial test suites on the effec-
tiveness of AutoBlackTest. The study was conducted using the Jaolt 0.6.10 application§, a desktop
client for eBay auctions (19.677 locs). This application was selected because it includes several
complex forms, which challenge AutoBlackTest, and it expected that some initial test suite could
bring relevant benefits.

The system test suites for the study was manually designed, considering two main dimensions:
the sequences of operations and the input values. Each dimension was reasoned in terms of positive
cases, which are test cases that lead to the successful execution of the functionality targeted by
the test case, and negative cases, which are test cases that include improper usages of the target
functionality. According to these criteria, four artifacts were generated:

Dp a set of positive values obtained by defining a positive and correct input for each widget of
the application;

Dn a set of negative values obtained by defining a negative and incorrect input for each widget
of the application;

Tp a set of positive test cases, that is sequences of actions that successfully execute one or more
functionalities of the application;

Tn a set of negative test cases, that is sequences of actions that are forbidden by the application.

The following six configurations were investigated for AutoBlackTest:

C_Dp The AutoBlackTest data set is populated with the values in Dp, simulating the case of a
tester providing positive values to the technique;

§http://code.google.com/p/jaolt/.
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Table VII. Statement coverage with different configurations and
initial test suites.

Configuration Initial coverage Average coverage Delta

Empty 0% 28.75% 28.75%
C_Dp 0% 28.52% 28.52%
C_DpDn 0% 31.06% 31.06%
C_TpDp 39.75% 44.68% 4.93%
C_TpDpDn 39.75% 43.34% 3.59%
C_TpTnDp 40.93% 44.5% 3.57%
C_TpTnDpDn 40.93% 43.51% 2.58%

C_DpDn The AutoBlackTest data set is populated with the values in Dp and Dn, simulating the
case of a tester providing both positive and negative values to the technique;

C_TpDp AutoBlackTest uses the model obtained by executing Tp as initial model. The data set
is populated with the data used in Tp, which matches the data included in Dp.

C_TpDpDn AutoBlackTest uses the model obtained by executing Tp as initial model. The data
set is populated with both the data used in Tp, which matches the data included in Dp, and the
data in Dn.

C_TpTnDp AutoBlackTest uses the model obtained by executing both Tp and Tn as initial
model. The data set is populated with the data used in Tp, which matches the data included in
Dp.

C_TpTnDpDn AutoBlackTest uses the model obtained by executing both Tp and Tn as ini-
tial model. The data set is populated with both the data used in Tp, which matches the data
included in Dp, and the data in Dn.

The effectiveness of AutoBlackTest was measured by measuring both the statement coverage and
the number of revealed faults. The results have been obtained by executing the technique three times
in a 12 h session.

Table VII shows the statement coverage achieved in the executions. Column Configuration
indicates the AutoBlackTest configuration: Empty indicates that AutoBlackTest executed without
any additional information, neither about data nor about test sequences. Column Initial Coverage
indicates the statement coverage obtained by executing the initial test suite only, when available.
Column Average Coverage indicates the statement coverage obtained by executing AutoBlackTest.
Column Delta indicates the increment of coverage produced by AutoBlackTest with respect to the
initial test suite.

The results reported in the table indicates that AutoBlackTest with no additional information
achieves the lowest statement coverage, still inspecting a relevant portion of the execution space
autonomously. In fact, it covers more than 28% of the statements of the application, while the best
manual test suites covered 40.93% of the statements.

The use of positive and negative values in the data set does not bring relevant benefits. In particu-
lar, the use of positive values does not impact significantly on the coverage, while the use of negative
values improves the coverage from 28.75% (Configuration D Empty) to 31.06% (Configuration D
C_DpDn), suggesting that introducing a notion of incorrect values in the technique can trigger some
corner cases that AutoBlackTest can hardly cover otherwise.

With an initial test suite, AutoBlackTest increases the statement coverage up to 44.68%. The
initial test suite that consisted of a fairly complete set of executions that samples analytically every
functionality of the application, provided a coverage of about 40%, suggesting the possible presence
of many statements unreachable in the configuration used in the experiment. The application code
was inspected, and it was observed that the dead code and the code that implements functionality that
it was not considered in the test¶ amount for at least 20% of the code. This estimation is conservative,
and the set of unreachable statements may be much larger. AutoBlackTest has been able to increase

¶Since jaolt is an eBay client, this study does not consider the functionality related to interactions with the concrete eBay
service.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr



L. MARIANI ET AL.

the code coverage automatically by an amount between 2.58% and 4.93%. Considering that these
extra statements are covered automatically by identifying unusual combinations of functionalities
that were already tested in the initial test suite and that the application contains a big amount of
unreachable code, the result is encouraging. The relevance of this extra coverage is confirmed by
the data about faults that indicate that AutoBlackTest discovered several real faults.

Table VIII reports the number of faults found with the different configurations. It indicates
the AutoBlackTest configuration (column Configuration), the average number of faults revealed
per testing session (column Average faults) and the total number of faults (column Total faults)
distinguishing between severe (column Severe) and minor faults (column Minor).

The data reported in the table show that AutoBlackTest has been able to reveal faults in every
configuration, strengthening the good results reported in the previous section. In total, six new faults
were discovered, one severe and five minor ones. Figure 7 shows the faults discovered in each
configuration.

By comparing the results obtained with only data values with the results obtained with an initial
test suite, it is noticeable that with an initial test suite AutoBlackTest reveals a higher number of
faults. In fact, AutoBlackTest revealed two faults only in the configurations C_Dp and C_DpDn,
and three to four faults in the other configurations.

By comparing the results about the incremental coverage and the number of revealed problems,
it is possible to confirm the intuition that even if the unusual combinations automatically generated
by AutoBlackTest lead to a small increment of the coverage, the extra combinations tested in this
way reveal several faults. Small increments in statement coverage (between 2.58% and 4.93%) can
reveal more faults (between 2 and 4).

A surprising aspect is that with the Empty configuration, that is without any additional informa-
tion about the data and the test sequences, AutoBlackTest revealed the highest number of faults
together with the C_TpTnDpDn configuration. Both the Empty and C_TpTnDpDn configurations
revealed the same two minor faults, but the Empty configuration revealed one severe and one
minor fault that have not been revealed in the C_TpTnDpDn configuration, and the C_TpTnDpDn
configuration revealed two minor faults that have not been revealed in the Empty configuration.

It is worth noticing that the faults revealed with AutoBlackTest in these experiments are real and
not seeded faults, and are found in a popular application. Since the number of faults in jaolt is likely

Table VIII. Fault revealed with different configurations and initial test suites.

Configuration Average faults Total faults Severe Minor

Empty 2.33 4 1 3
C_Dp 1.33 2 0 2
C_DpDn 1.33 2 0 2
C_TpDp 2 2 0 2
C_TpDpDn 2 3 0 3
C_TpTnDp 0.67 2 0 2
C_TpTnDpDn 1.67 4 0 4

Figure 7. The relation among the faults discovered in the different configurations.
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to be limited, and their presence could be concentrated in few specific areas of the application,
revealing few more faults could be incidental rather than a sign of effectiveness. To disambiguate
the case it was analyzed more in detail the state exploration in the Empty and C_TpTnDpDn con-
figurations to check if there are intrinsic differences in the way the two approaches explore the
execution space.

The diagram in Figure 8 indicates the distribution of the states visited in each configuration:
the x-axis indicates the states incrementally numbered while visited, while the y-axis corresponds
to the different configurations: Empty, C_TPDp (the configuration with the highest coverage) and
C_TpTnDpDn (the configuration that revealed the highest number of faults). The diameter of each
circle is proportional to the number of times the state has been visited.

The shape of the plotting shows an intrinsic difference between the exploration strategies with
and without an the initial test suite. With an initial test suite, AutoBlackTest explores less states than
without the initial test suite and covers each state more times with the exception of the initial states
that are covered more in the absence of an initial test suite. With no initial test suite, AutoBlackTest
shall autonomously understand how to use the application and thus spends more effort in the initial
states. Then the exploration strategy proceeds in an unbiased way leading to the continuous discov-
ery of new states. On the contrary with an initial test suite, AutoBlackTest spends more effort in the
states close to the ones covered by the initial test suite and devotes less effort in discovering new
states. Depending on the distance between the states covered by the initial test suite and the faulty
states, one approach could be more likely to discover some faults than the other.

This phenomenon explains also why in the Empty configuration, AutoBlackTest discovered one
fault not discovered by the other configurations. The fault uniquely discovered by the Empty con-
figuration is triggered by interacting with the early states of the application, which are the states
that the Empty configuration covers better, namely the states with a number less than 100 in
Figure 8.

6.6. Threats to validity

An important threat to the internal validity of the experiments is the selection of the case studies. To
mitigate the risk of choosing applications that may impact the results, third-party publicly available
applications were selected. They have various sizes, cover different domains and have been already
used in empirical studies on GUI testing.

Another threat to the internal validity is related to the choice of the values of the parameters that
influence the behaviour of AutoBlackTest. To reduce this threat, the parameter values were chosen
according to the empirical experiences reported in previous research (for the discount factor) and the
empirical analyses reported in this paper (for the policy). Both previous research and the experiments
reported in this paper show that the performance of Q-learning changes gracefully for small changes

Figure 8. The distribution of the states visited in different configurations.
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of these parameters, and thus, the impact of a choice on the results is limited. According to these
evidences, although a strong statistical assessment was not performed, the results are expected to be
stable with respect to small changes of the configurations.

A final threat to the internal validity is the setup of the GUITAR tool. To mitigate this risk, the
tool was configured according to suggestions reported by authors of the GUITAR papers. Some test
sessions were also executed to empirically confirm the validity of the suggestions in the context of
our studies.

Another threat to validity is related to the manual definition of the initial test suites. Since no
system test suite was available for the case study, positive and negative test cases were manually
defined according to our understanding of the application. The simplicity of the applicative domain,
which refers to eBay auctions, mitigates the risk of misunderstanding the application. Naturally, test
cases developed by a testing team would not suffer from this drawback since testing team members
would be familiar with the application and would have access to the documentation.

The main threat to the external validity comes from the limited number of case studies that
we considered. We experimented AutoBlackTest with five applications. Further studies are neces-
sary to generalize the results, but the consistency of the results obtained so far with applications
from different domains and of different size gives us good confidence about the effectiveness of
AutoBlackTest.

The higher effectiveness of AutoBlackTest with respect to GUITAR has been experienced sim-
ulating overnight test sessions of 12 h and cannot be generalized to sessions of different length. In
particular, it cannot be generalized to longer sessions.

Finally, the main threat to the construction validity is related to the possible presence of faults in
the implementation of AutoBlackTest [23]. To mitigate this threat, the correctness of the behavioural
model extracted for a number of sample executions was manually checked and the detected faults
were validated by replaying all the executions that detected issues in the case studies.

7. RELATED WORK

Generating and executing system test cases for interacting applications is still largely a manual
activity and automation is mostly limited to capture and replay tools, such as IBM Functional
Tester [15] and Maveryx [24], that reexecute previously recorded test cases. These tools reduce
regression testing effort but rely on the manual generation and execution of the initial test suite.
AutoBlackTest complements these tools by automatically generating and executing test cases for
interactive applications.

Recent work on automated test case generation exploits GUI coverage metrics that measure how
many of the events produced by widgets have been stimulated in the testing process [4, 5]. These
metrics evaluate how many widgets a test suites ‘touched’ but do not provide information about
the computations that have been covered. For this reason, standard statement coverage was used to
measure the amount of code executed by AutoBlackTest.

Memon et al. [6, 7] take advantage from GUI coverage metrics to define techniques that gener-
ate system test cases that cover sets of GUI events. The effectiveness of these techniques is limited
by the accuracy of the initial model. AutoBlackTest overcomes this issue by building a model
dynamically and incrementally while exploring the behaviour of the application.

A few recent approaches addressed the issue of generating GUI test cases applying search-based
[8] and concolic testing techniques [9]. Although these techniques can derive test cases that directly
improve code coverage, they have to face the issue of analyzing multiple layers of software in order
to produce effective test cases. AutoBlackTest is a complementary solution that does not rely on the
analysis of the code but generates test cases with a purely black-box perspective.

Xie and Memon investigated the use of oracles for GUI test cases. Xie et al. [20] show that there
exists a tradeoff between the accuracy of the oracles and the cost of evaluating oracles at run-time.
Several of the oracles evaluated by Xie and Memon can be potentially integrated in AutoBlackTest.

Test case generation can benefit from additional information about the application under test.
For instance, generation of system test cases can take advantage of usage profiles to be more
effective [25]. Unfortunately, good usage profiles are not always available.
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Generation of system test cases has been investigated also in other domains. In particular, there are
several techniques to generate test cases for Web applications. Some of these techniques share with
GUI testing the underlying idea of covering specific sequences of events, for instance semantically
interacting events [26]. Other techniques produce test cases by relying on navigation models [27]
or data captured from users sessions [28]. While these models and data are quite common for Web
applications, they are less frequently available for GUI applications.

There is an impressive amount of work about the relation between learning of finite state
models and testing [29–31]. So far the integration of learning and testing has been mostly exploited
to generate tests in domains different than GUI testing and on cases smaller than entire software sys-
tems [32–36]. AutoBlackTest adds evidence of the effectiveness of combining learning and testing,
also when applied to the generation of system test cases.

8. CONCLUSIONS

The problem of generating system test cases is particularly hard because black-box approaches have
to deal with a complete GUI, which could be large and complex, and white-box approaches have to
deal with the many software layers that are activated every time a stimulus is provided.

This paper presented AutoBlackTest, a black-box technique for automatically generating system
test cases. AutoBlackTest effectively addresses the complexity and size of GUIs by incrementally
learning how to interact with the application under test and thus incrementally synthesizing test cases
that cover new functionalities of the applications. When a manually designed test suite is available,
AutoBlackTest can take advantage of the test cases to synthesize complementary test cases.

The results presented in the paper show that AutoBlackTest can automatically generate system
test cases that cover a relevant portion of the statements in the target applications and discover
faults not detected by developers. The empirically comparison with GUITAR indicates that
AutoBlackTest can generate test cases that cover more statements and reveal more failures than the
test cases generated with GUITAR.

Future research agenda include plans to extend AutoBlackTest to add the capability of automat-
ically generating input values rather than using values present in a data set and to investigate the
application of AutoBlackTest to the domain of apps for mobile devices.
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