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Abstract—This paper investigates the limits of current data
flow testing approaches from a radically novel viewpoint, and
shows that the static data flow techniques used so far in data flow
testing to identify the test objectives fail to represent the universe
of data flow relations entailed by a program. This paper compares
the data flow relations computed with static data flow approaches
with the ones observed while executing the program. To this end,
the paper introduces a dynamic data flow technique that collects
the data flow relations observed during testing. The experimental
data discussed in the paper suggest that data flow testing based
on static techniques misses many data flow test objectives, and
indicate that the amount of missing objectives (false negatives)
can be more limiting than the amount of infeasible data flow
relations identified statically (false positives). This opens a new
area of research of (dynamic) data flow testing techniques that
can better encompass the test objectives of data flow testing.

I. INTRODUCTION

The application of data flow analysis to software testing
has been proposed in the mid seventies by Herman [1],
and data flow testing has attracted a lot of attention in the
following decades. Initially data flow testing criteria have
been proposed as alternative approaches to classic control flow
testing criteria, aiming at more thorough test suites [2], [3],
[41, [5], [6], [7], [8], [9]. Lately there has been increasing
emphasis on the applications of data flow testing to object
oriented systems where the focus is on object interactions both
at intra- and inter-class levels [10], [11], [12], [13], [14], [15],
[16]. Unfortunately, despite the huge body of research, the
experimental data about the effectiveness of data flow testing
are still contradictory and inconclusive [6], [7], [8], [9], [17],
[18], [19], [20].

This paper investigates the limits of the current approaches
to data flow testing. We lay the research hypothesis that
the domain of test objectives identified by the traditional
(static) data-flow analysis techniques ([21], [22], [14], [23])
is scarcely representative of the data flow relations that are
relevant for testing (object oriented) programs according to
the foundational assumptions that underlie data-flow testing.

To investigate the effectiveness of classic techniques for
data flow testing, we introduce a technique that we call
dynamic data flow analysis that identifies the relevant data flow
relations by monitoring a set of executions of the programs
under test, and we compare the outcome of the static (classic)
and the dynamic (from this paper) techniques, to show that
classic static data flow techniques miss huge amounts of data
flow information. Our dynamic data flow analysis detects the
program instructions that define values of memory locations

during the execution, identifies the class state variables that
depend on those values, and traces the propagation of the val-
ues of those state variables through the program. It generalizes
such information across multiple executions of a program.

As distinctive characteristics, the dynamic data flow analy-
sis defined in this paper suffers much less than the static tech-
niques from the difficulty of accounting for the (in)feasibility
of program paths, and it can exploit the precise alias infor-
mation available from the concrete execution states to relate
memory data and class state variables with each other. In this
way, we can be dramatically more precise than considering
all statically computable aliases, which is the typical over-
approximation when integrating alias information in a static
data flow technique. Thus, the dynamic analysis defined in
this paper represents an interesting reference to quantitatively
evaluate the impact of such problems in the static techniques.
As confirmed by the data reported in this paper, the scarce
robustness with respect to alias relations leads static data flow
techniques to miss large amounts of data flow relations.

This paper is organized as follows. Section II exemplifies
some of the challenges involved with static data flow tech-
niques. Section III introduces the dynamic data flow analysis
for object oriented software that we use as a baseline to
evaluate classic data flow analysis techniques. Section IV de-
scribes an empirical study that evaluates the completeness and
consistency of classic data flow techniques by quantitatively
comparing the data flow information identified statically and
dynamically. Section V surveys the related work in the fields of
data flow testing and dynamic analysis. Section VI summarizes
the conclusions of this paper.

II. DIFFICULTIES OF CLASSIC DATA FLOW TESTING

We illustrate some of the issues involved with data flow
testing, through the sample Java program of Figure 1. The
examples discussed in this section pinpoint the difficulties
of the static data flow techniques to precisely interpret the
semantics of the code, in particular when the expected results
depend on the (non-)executability of some program paths,
the possible dynamic bindings of some method calls, or the
occurrence of aliases between program variables and objects
in memory.

Static data flow techniques identify the propagation of
definitions through the execution of the code both within
single methods (intra-procedural analysis) and across method
invocations (inter-procedural analysis).



In the Java program of Figure 1, the field nest.i is defined
by invocations of the methods of the classes Nest (lines 34
and 35) and NestA (line 39). These definitions propagate
intra-procedurally to the end of the respective methods. We
denoted these definitions as Dy, D1 and D, respectively. In
Figure 1, we have annotated the exit of the methods with
a comment that indicates the definitions propagated in each
method, that is, the definitions that are possibly executed
within the execution flow of that method and not yet overridden
by any subsequent assignment until the exit of that method.
For example, executing either method Nest.n() or NestA.n()
would propagate D1 or Do, respectively. Differently, executing
method NestB.n() would propagate the definition Dy that is
active at that point because of the execution of the constructor
of class Nest.

The definitions Dy, Dy and D, also propagate to the meth-
ods m1..m5 through the calls to the methods n. In these cases,
the propagation of the definitions depends on the dynamic
binding of the method calls. For example, the call to the
method n in method m1 at line 7 can be dynamically bound to
any of the methods of the classes Nest, NestA or NestB, and
can thus result in the execution of the definitions at lines 34, 35
or 39, and all the three definitions can propagate to the exit
point of method m1. Similarly, the calls to the method n in the
methods m2..m5 can be dynamically bound to different sets of
methods in Nest, NestA or NestB, and can thus propagate
different definitions to the exit of the methods, as we discuss
in details in the examples below.

Methods m1..m5 illustrate the impact of dynamic binding,
infeasibility and aliases on data flow analysis, thus illustarting
the necessity of pairing data flow analysis with other static
analysis techniques, and in particular different types of alias
analysis techniques [24]. The examples indicate that the choice
of different partner techniques can either result in aggressive
over approximations that address well some of the problems
in some cases, but determine too many false positives in
other cases, or can address many specific cases at the cost
of increasing the overall computational complexity, and thus
question the affordability of the final technique.

Method m1 may call nest.n() at line 7 that, depending
on the runtime type of the object nest, can result in exe-
cuting any method out of Nest.n(), NestA.n() or NestB.n().
Accordingly, the execution of method m1 can propagate any
definition out of Dy, D and D5 to the exit of the method.
When considering only the static type Nest declared for the
reference nest, we may erroneously conclude that only D;
propagates until the exit of m1, because of the call to Nest.n().
Thus, to correctly identify the possible flows of data related
to method m1, a static data technique must know the possible
dynamic bindings of the call nest.n(). In cases like this, we
can statically identify the correct bindings with a simple and
efficient flow-insensitive may-alias analysis.

Method m2 shows that the use of flow-insensitive infor-
mation may not be sufficient in general, since it can produce
over-approximated results. Executing method m2 may lead to
calling method nest.n() at line 11, if the condition at line 10
holds. But this condition restricts the dynamic type of nest to
NestA, and thus only definition D5 can propagate to the exit
of method m2. In cases like this, flow-insensitive may-alias
analysis over-approximates the behavior of m2, because the

1 | class ClassUT {

2 private Nest nest;

3 ClassUT (Nest n){

4 nest = n;

5

6 void ml(int p){

7 if (p<0) nest.n();

8 }//D0, DI, D2

9 void m2(){

10 if (!(nest instanceof NestA)) return;
11 nest.n();

12 } //D2

13 void m3(int p){

14 if (!(nest instanceof NestB)) return;
15 ml(p);:

16 }//D0

17 void m4(int p){

18 p += 3;

19 if(p> 1) ml(p);

20 } //none

21 void m5(){

22 Nest ref = nest.f();
23 ref.n();

24 }//D0, DI, D2

25

26 /7 ...

27 void doSomething (){

28 int v = nest.i;

29 /xdo some computation with v=x/
30 }

31 |}

32 | class Nest{

33 protected int i;

34 Nest(){i = 0;} //D0

35 void n(){i = 1;} //DI
36 Nest f(){/*lot of code;*/ return this;}
37

38 | class NestA extends Nest{
39 void n(){i = 2;}//D2
40

41 | class NestB extends Nest{
42 void n(){}//D0

43 |}

Fig. 1. A sample program in Java

propagation of the definitions is constrained by flow-sensitive
information. Flow-sensitive alias analysis can provide the in-
formation needed to correctly identify the dynamic propagation
of the definitions, but flow-sensitive alias analysis is even more
computationally expensive than flow-insensitive analysis.

Method m3 exemplifies the need for further extending the
flow sensitive analysis, to handle the invocation context of
the method calls. Method m3 may call nest.n() indirectly,
as a result of calling method m1 at line 15. However, while
the direct call of m1 can propagate all the definitions Dy,
D, and Ds, the call of ml in this context propagates only
DO. In general, program paths and aliases through methods
depend on the invocation context. In method m3, the condition
at line 14 restricts the type of nest at line 15 to NestB, and
thus only the definition Dy can propagate to the exit of method
m3. Thus, the already computational expensive flow-sensitive
analysis must be made invocation context-sensitive, at the price
of further increased complexity. The interested readers can find
an exhaustive discussion of the dimensions of precision of
different types of alias analysis and of the related tradeoff in
the excellent paper of Barbara Ryder [24].

Method m4 shows that the propagation of definitions may
be affected also by the presence of infeasible inter-procedural
paths. In fact, the contradictory conditions on parameter p in
methods m4 and m1 prevent the call to nest.n() at line 7
when method m1 is called from method m4 at line 19. Some




combinations of symbolic reasoning and automatic constraint
solving could address problems like this, but again with major
impact on the complexity and the scalability of the approach.

Method m5 illustrates the impact of aliases on the propaga-
tion of definitions [25]. In this case to correctly compute the
dynamic propagation of definitions, data flow analysis should
know that method m5 enforces an aliasing between the local
reference ref and the field nest. This information is essential
to identify that the call to ref.n() at line 23 can propagate the
definitions of nest.i. Depending on the code to be analyzed
within method nest.£() called at line 22, correctly identifying
such alias information can become a prohibitive task even for
highly sophisticated alias analyses.

These examples show that static data flow analysis cannot
handle well dynamic information. They also indicate that
enhancing data flow analysis with alias analysis techniques
does not solve the problem, due to the difficulty of finding the
right level of precision (flow-, context- and value-sensitivity)
of both types of analyses. In general, the designer of the data
flow technique must confront themselves with the trade-off
between precision and affordability on several design decisions
related to the data flow analysis, the alias analysis, or to the
combination of the two. Often, they end up with embracing a
mix of (different) under and over-approximations that makes
it unclear the degree of approximation of the final technique.

III. DyNAMIC DATA FLOW ANALYSIS

This section defines the technique for program analysis
that we refer to as DReaDs, dynamic reaching definition
analysis, and that we use to evaluate the precision of static
data flow techniques. DReaDs identifies data flow relations
in the execution traces of object oriented programs. The
distinctive characteristic of DReaDs is to exploit dynamic
analysis, meaning that it monitors programs at runtime and
tracks data flow information in the observed execution traces.

DReaDs focuses on data flow relations of class variables
that underlie the interesting state based interactions between
methods. DReaDs traces the interesting actions on the class
state variables during the program executions by maintaining a
model of the relevant relations between the objects in memory,
and monitors the propagation of the state data accordingly.
It merges the data flow relations observed across different
execution traces to derive information compatible with the
results of static data flow techniques and enable the comparison
between the two approaches.

Below, we describe the concept of class state variable as
addressed in DReaDs, formalize the dynamic analysis along
each execution trace, and explain how DReaDs merges the
data flow relations observed across multiple execution traces.

A. Class State Variables

In object oriented programming, the class state indicates
an assignment of the attributes (the fields) declared in a class,
in the context of some object that instantiates the class. A
class state can be structured if the related class includes (at
least) an attribute with non-primitive value, i.e., an attribute
defined as a data structure, possibly declared with reference to
the type of other classes. For example, the state of the class

ClassUT in Figure 1 includes the object nest whose state is
the attribute i, and thus the state of the class ClassUT includes
an assignment of nest.i. A structured state can include several
recursive nesting levels.

DReaDs aims to identify the data flow relations between
the class state and the execution of the class methods. It
represents the class state as a set of class state variables, each
corresponding to an assignable (possibly nested) attribute that
comprises the state of the class under test. State variables are
identified by the class they belong to and the chain of field
signatures that characterise the attribute.

Definition 3.1: A class state variable is a pair
(class_id, field_chain), where class_id is a class identifier
and field_chain is a chain of field signatures that navigate the
data structure of the class up to an attribute declared therein.

For example, in the program of Figure 1, the field nest.i of
the class classUT is identified in DReaDs as the class state
variable (ClassUT, nest.i).

DReaDs aims to both identify the definitions of the
class state variables, i.e., the code locations that as-
sign values to class state variables, and analyze the
propagation of the assigned values throughout the code
that can be executed thereafter. According to the classi-
cal terminology of data flow analysis, a definition is a
pair (state_variable, code_location_of_assignment), and a
reaching definition is a definition that may propagate from the
assignment to a subsequent code location.

A class state variable can refer to either a primitive or
a non-primitive attribute. Non-primitive class state variables
reference an entire data structure as a whole. In some context
of the DReaDs analysis (§ III-B2), an action on a non-
primitive class state variable can result in actions on attributes
nested in the corresponding data structures. For example, the
assignment nest = n in the constructor of the class ClassUT
in Figure 1 determines the definition of the non-primitive class
state variable (ClassUT, nest) at that code location, and the
propagation of the values previously assigned to the fields of
the object n.

B. Reaching Definitions along an Execution Trace

DReaDs monitors the execution of the program under
analysis to identify the reaching definitions of the class state
variables. To this end, DReaDs includes three main com-
ponents: 1) A component that maintains a model of the
relations between the object instances in memory at runtime
to identify the class state variables involved in the execution;
2) A component that monitors the definitions of the class state
variables and the related propagations along each execution
trace; 3) A component that merges the reaching definitions
computed across multiple traces. The pseudocode of Algo-
rithm 1 summarizes the work flow of the technique. We use
the pseudocode to frame the presentation, pointing the reader
to the sections that describe the components of the technique.

DReaDs takes as input a program and a related test suite,
and loops through executing all the test cases in the test
suite (Algorithm 1, lines 2 and 3). For each test case, it
executes the program under analysis step-by-step (lines 6 and
7) until the execution of the test case terminates (line 11).



For each execution step, DReaDs invokes the three compo-
nents, here referred to as maintainM(emory)Model (line 8),
applyKillGen (line 9), and mergeR(eaching)Defs (line 10)
that are described in Sections III-B1, III-B2 and III-C, respec-
tively. DReaDs summarizes the results in a report (line 13).

The variables R(eaching)Defs, C(urrent)Defs and
M(emory)Model are intermediate results that DReaDs com-
putes incrementally, and highlight the most relevant informa-
tion flows through the analysis steps. RDefs contains the infor-
mation relative to the reaching definitions. It is initially empty
(line 1), is incrementally updated by the merging mechanism,
and is eventually exploited to report the computed reaching
definitions at the end of the analysis. CDefs contains the
information relative to the current definitions. It is initialized
to empty when DReaDs starts analyzing an execution trace
(line 4), is incrementally updated by the kill-gen data flow
logics, represents the (not yet merged) reaching definitions
at any state of the current trace, and is exploited within the
merging process. MModel is the memory model. It is initialized
to empty at the beginning of an execution trace (line 5), is
updated by the model maintenance mechanism, and represents
the incrementally computed memory model that serves to
implement the kill-gen semantics.

Algorithm 1 DReaDs(PUA, TS)

Require: Program: The program under analysis

Require: TestSuite: A test suite for the program under analysis
1: RDefs = EMPTY
2: while hasNextTestCase(TestSuite) do
3: TestCase = nextTestCase(TestSuite)

4: CDefs = EMPTY

5: MModel = EMPTY

6: repeat

7: State = executeStep(Program, TestCase)

8: MModel = maintainMModel(MModel, State) © § III-B1
9: CDefs = applyKillGen(CDefs, MModel, State) > § I1I-B2
10: RDefs = mergeRDefs(RDefs, CDefs, State) > § I-C
11: until —atEndOfProgram(State, Program)

12: end while

13: reportReachingDefs(RDefs, Program) > § II-C

The next sections describe in detail the components of
DReaDs.

1) Memory Model: DReaDs maintains a runtime model
of the relations between the object instances in memory
at runtime, to identify the class state variables involved in
assignments along an execution trace. The model is a directed
graph, where the nodes represent the distinct object instances
in memory and the edges represent references between in-
stances. The distinct object instances in memory are univocally
identified by their identity in memory (their address). An edge
from a node nl to a node n2 with label [ represents a field
l in n1 that refers to n2. The primitive fields are represented
in the model as edges from the corresponding instance to a
special sink node that stands for any primitive value.

DReaDs builds and maintains the memory model incre-
mentally, while monitoring the execution of the program
under analysis. It initializes the model to an empty graph for
each test case (Algorithm 1, line 5) and updates the model
after each execution step (line 8) to correctly represent the
status of the objects that exist in memory at that point of

the execution. The updating mechanism consists of adding
nodes and/or adding/removing edges, according to the memory
related operations observed during the execution.

DReaDs adds a node to the model whenever it observes
a memory reference related to an object instance that is not
represented in the model yet. To this end, it relies on a runtime
monitoring framework that detects whether the parameters
of the last executed statement contain memory references
that correspond to some object instances in the memory, and
retrieves the identity (the memory address) of those instances.
Then, it augments the model with a new node for each identity
not represented in the model yet. In this way, DReaDs lazily
enforces the memory model to include a node for each object
instances that has been accessed at least once at runtime.

DReaDs adds and removes edges to the model when
observing assignments to instance fields. If the model already
contains an edge that represents the field, then DReaDs re-
moves it. If the value assigned to the field is non null, then
DReaDs augments the model with a new edge from the field
owner instance to the node identified by the assigned value.

DReaDs addresses array structures as special instances that
comprise a field for each offset in the array. Thus, the above
representation and handling generalize to arrays as well.

2) Dynamic Reaching Definitions Analysis: The core of
DReaDs is a dynamic analysis that computes the reaching
definitions related to single executions of the program under
analysis. In a nutshell, the analysis consists of observing the
definitions due to assignments of instance fields, and tracking
the propagation of those definitions until they are eventu-
ally overridden by any subsequent assignment. The dynamic
analysis described in this section specializes the concept of
class state variable introduced in Definition 3.1 to capture the
concrete states of the object instances at runtime, and adapts
the concepts of definition and reaching definitions accordingly.

Definition 3.2: An instance state variable is a pair
(instance_id, field_chain), where instance_id is the iden-
tity of an object instance and field_chain is a chain of field
signatures that navigate the data structure of the instance up
to an attribute declared therein.

Definition 3.3: A definition of instance state variable is
a pair (instance_state_variable, assignment_statement),
indicating that an instance variable is the target of an assign-
ment statement.

Definition 3.4: The dynamic reaching definitions are a map
{i1,i2,...,in} — {D1,Da,...,D,}, where each i, is an
executed statement and each D, is a set of definitions of
instance variable. The dynamic reaching definitions indicate
that the values set by some definitions propagate unchanged
up to an statement, that is, the definitions in Dj propagate
values up to the statement i, (0 < k < n).

DReaDs computes the dynamic reaching definitions pro-
gressively for each statement executed along a program exe-
cution. It relies on the classical data flow analysis that links the
reaching definitions at a prior statement to the reaching defi-
nitions at the immediately next statement [21]. Formally, the
equation states that NEXT = (PRIOR — KILL)UGEN,
where NEXT and PRIOR denote the set of prior and



next reaching definitions, respectively, and GEN and KILL
denote the sets of definitions that start and stop propagating
because of the last executed statement. DReaDs assumes an
empty set of reaching definitions before executing the program
(Algorithm 1, line 4), and updates this set according to the
above equation after executing each statement (line 9).

Only the statements that assign instance fields can
(re-)define instance state variables. Specifically, an assignment
of instance field defines the state variables that both relate
to the assigned instance by their instance_id, and depend
on the assigned field by their associated field_chain. Any
other statement propagates the exact set of dynamic reaching
definitions computed at the previous statement. The next
paragraphs explain how DReaDs computes the sets GEN
and KILL when the program executes the assignment of an
instance field.

The set KILL includes the definitions that, propagated
from the previous to this statement, will not propagate further
because the related state variable is re-defined. To compute
KILL, DReaDs just matches the instance and the field
referred in the assignment statement against those of each
currently propagating definition, and selects the definitions that
match.

To compute the set GEN, DReaDs exploits the memory
model to identify which state variables have been defined by
the assignment statement in the current memory state. (Let us
recall that the memory model has been updated just after the
last statement and before this step of the analysis § III-B1.) An
assignment of an instance field f defines the state variables that
either identify f as part of the state of an instance in memory,
or represent the sub-fields of f that now refer to the values of
a data structure as a result of the assignment of f to that data
structure.

To determine the former state variables, DReaDs uses the
memory model to retrieve the instance that owns the assigned
field, and performs a backward depth-first traversal of the
memory model starting from the field owner instance. By
construction, each node visited through the traversal and the
reversed path of edges traversed up to that node represent the
instance_id and the field_chain of a defined state variable.
Thus, DReaDs augments GEN with a definition for each of
those instance state variables.

When the assigned value refers to a data structure, DReaDs
determines the definitions of the state variables that relate
values in this data structure. First, it selects the propagating
definitions whose instance_id is equal to the assigned value,
that is, the pre-existing definitions of the values in the data
structure. Then, for each state variable v that encloses the
assigned field (that is, the variables determined at the previous
step) and for each definition d selected above, DReaDs builds a
state variable v, to represent the subfield sub of v that now
refers to the value defined by d. Specifically, it builds vgyp
such that wvgyp.instance_id is equal to v.instance_id, and
Vsup- field_chain results from concatenating v. field_chain
to d.state_variable. field_chain. DReaDs augments GEN
with a further definition for each instance state variable v,
built as above.

C. Generalized Analysis across Multiple Traces

DReaDs interprets the information on the reaching defini-
tions of the instance state variables produced with the dynamic
analysis described in the previous section, to establish which
reaching definitions of the class state variables have been
observed across a set of executions. The reaching definitions
of the class state variables generalize Definition 3.4 as follows:

Definition 3.5: The reaching definitions are a map
{i1,i2,...sin} — {D1,Da,...,D,}, where each i, is an
statement and each D, is a set of definitions of class state
variable. The reaching definitions indicate that the values set by
the definitions in Dy, propagate unchanged up to the statement
ir (0 < k < n), in the context of some class instance and
some execution.

After each step of dynamic analysis, DReaDs matches
the concrete facts observed for the instance state variables to
facts that hold for the class state variables that specify those
instances in the code (Algorithm 1, line 10). In particular,
DReaDs 1) matches the dynamic data about the reaching def-
initions of the instance state variables at the current statement
to observations of reaching definitions of the corresponding
class state variables at the same statement, and 2) merges the
resulting definitions to the ones that were computed at previous
traversals of the statement.

Matching a (reaching) definition of an instance state vari-
able to a corresponding (reaching) definition of a class state
variable simply consists of rewriting the data for the former
definition, and substituting the instance_id of the instance
with the class_id of the dynamic type of the instance. Merging
the definitions that reach an statement multiple times amounts
to maintaining only one representative for the definitions
with exactly the same data. DReaDs indexes the observed
definitions of the class state variables in a global cache, and
uses bit vectors over the cached indices to efficiently represent
the sets of reaching definitions associated with the statements.

As last step, DReaDs summarizes and reports the results
of the analysis (Algorithm 1, line 13). In this paper, we focus
on the reaching definitions related to the state variables of
a class that occur when invoking the methods of that class,
since this result is compatible with the one computed by
the static techniques for data flow testing, which we aim to
compare with. Thus, we configured DReaDs to report, for
each statement, only the reaching definitions of the class state
variables of the class that encloses that statement in the code.
In general, the reporting mechanism depends on the intended
use of the reports, and DReaDs can provide other types of
reports to address different goals and levels of data flow testing,
e.g., inter-class (other than intra-class) data flow interactions
and integration (rather than class) testing.

IV. EVALUATING DATA FLOW ANALYSIS

The main goal of this paper is to study the impact of static
data flow techniques on data flow testing. We already observed
in Section II that the design of static data flow techniques
is generally jeopardized by a trade-off between precision and
affordability, and we hypothesized that those decisions likely
result in unacceptable degrees of approximation of the test
objectives computed with these techniques. Following our



hypothesis, we question whether the current approaches to data
flow testing identify the right testing objectives without miss-
ing important ones. In Section III we introduced a dynamic
data flow analysis technique, DReaDs, that monitors the reach-
ing definitions of class state variables that occur through the
execution of object oriented programs. Being computed from
execution traces, these definitions represent feasible targets
for data flow testing, and we compare them with the testing
targets computed with static data flow techniques to evaluate
the testing objectives computed statically.

In this section, we empirically evaluate the precision and
the recall of the set of data flow relations identified with a
consolidated static data flow technique, by comparing the data
flow relations identified by the static technique with the (homo-
geneous) data flow relations that we observed at runtime with
DReaDs. For the emprirical evaluation, we have implemented a
prototype tool of DReaDs for Java. The prototype works on top
of the DiSL' framework for dynamic program analysis [26].

We collect data across a benchmark of more than 1,500
Java classes. We analyze the amount of data flow relations
that are statically missed though dynamically observed, and
the amount of data flow relations that are statically identified
but never observed. Below, we detail the research questions,
the design and the results or the study, and discuss the
interpretation and the threats to the validity of our findings.

A. Research Questions

Our study addresses two main research questions:

e  Does a static data flow technique identify a set of data
flow relations that approximates sufficiently well the
universe of the data flow relations entailed by a class
under test?

e To what extent is the outcome of a static technique
affected by false-positive (statically identified, though
infeasible) or false-negative (statically missed, though
existing) data flow relations?

B. Design of the Study

The main independent variable of the study is the data
flow technique applied to identify the data flow relations of
the sample classes, i.e., either a static technique or DReaDs.
The depended variable of each observation is the set of data
flow relations identified with one of the techniques for a class.
Other sources of variability include the classes and the test
cases used in the experiments.

The study instantiates the static data flow approach after
DaTeC, a mature and consolidated state-of-the-art technique
for data flow testing of object oriented software that we
developed in previous work and extensively experienced over
the years [15], [23], [20]. DaTeC embodies an inter-procedural
reaching definition analysis, handles Java programs, and targets
reaching definitions of class state variables that comply with
Definition 3.1. Thus, comparing the results of DaTeC and
DReaDs is well grounded. To the best of our knowledge,
we are not aware of other publicly available tools for inter-
procedural data flow analysis of object oriented programs.

IDISL is available on its official website: http://disl.ow2.org/

TABLE 1. STATISTICS OF THE SUBJECT APPLICATIONS

Application Eloc  #Classes  #Tests  Coverage”™

Jfreechart 55k 619 26484 0.93

Collections 13k 444 20604 1.00

Lang 11k 150 3254 1.00

Jtopas 3k 63 1562 0.98

JgraphT 6k 255 1009 1.00
[ 88k 1531 52913

* Median value of Eloc coverage per class, computed with Cobertura.

As data flow relations, the study measures the set of
definitions of class state variables that are (may be) executed
within a class method, and (may) then reach the exit of that
method. Both DReaDs and DaTeC compute this information
as part of the respective reaching definition analyses. Hereafter
we refer to these particular sets of reaching definitions as the
defs@exit of aclass method. We measure the defs@exit
for a class by aggregating the defs@exit measured for the
methods of the class.

To pinpoint the difference between the results of DaTeC
and DReaDs, we compare pairwise the sets of defs@exit
computed by either technique for each method of each subject
class, and filter out of each set the definitions that are computed
by both techniques. Two definitions computed with DReaDs
and DaTeC, respectively, are the same if they denote an assign-
ment of the same class state variable made at the same code lo-
cation. When matching between the class state variables identi-
fied by DaTeC and DReaDs, we implement the most aggressive
matching between fields of polymorphic types, whose signa-
ture is identified by DaTeC and DReaDs as the type declared
in the code or the type of the instance observed at runtime,
respectively. The types dynamically identified by DReaDs
match any compatible type statically identified by DaTeC.

When a class state variable includes an array, we consider
the access to a single element of the array that we can
compute dynamically as a general access to the array structure
to maintain compatibility between the information computed
statically and dynamically.

In the study, we execute both DaTeC and DReaDs against
the classes of a set of Java applications, and collect the
defs@exit data flow relations identified by the two tech-
niques accordingly. Table I shows the statistics related to
the subject applications. The considered applications (column
Application) range between 3,000 and 55,000 executable lines
of code (column Eloc), and result to a sample of 1,531 classes
(column #Classes) that we regard as a statistically significant
number of observations.

We analyzed the classes with DReaDs by executing them
with test suites that include both the bundled test cases avail-
able for the classes and test cases synthesized automatically
with Randoop [27] and EvoSuite [28]). 2 Table I reports the
cumulative number of bundled and generated test cases that we
ran for each subject application (column 7ests), and the median
value of the coverage rates (column Coverage) that indicates
that the test suites cover a large portion of the classes.

2We configured Randoop and EvoSuite with time limits of 120 seconds
per application and 180 seconds per class, respectively. In EvoSuite we used
the branch fitness function. In Randoop we set a maximum length of 300
lines of code per generated test case. These configurations correspond to test
suites that produce high statement and branch coverage figures across all our
subjects. To account for the variability associated with the random-nature of
the techniques, we ran Randoop and EvoSuite several times.



C. Results

We computed the static data flow relations of the classes in
our sample with DaTeC, and the dynamic data flow relations
of the classes executed with the test suites with DReaDs. We
executed the experiments on a OSX 10.7 MacBook Pro with
2.2 GHz Intel Core i7 and 8GB of RAM memory. We did not
plan precise measures of the execution time, since they are not
relevant to our experiment.

Table II shows the total number of defs@exit computed
by DReaDs and DaTeC, respectively (column 7otal), and their
distribution across the classes considered in our study (columns
@1 = lower quartile, Median and Q5 = upper quartile). We
observe that DReaDs reveals the existence of about an order
of magnitude more defs@exit data flow relations than the
ones identified with DaTeC, and on average up to 6 times
more defs@exit than DaTeC per class, almost consistently
through the subject applications.

Table II also report the amount of defs@exit data flow
relations that were statically identified but never observed
(column never observed) and the amount of defsRexit
data flow relations that were revealed by DReaDs but missed
by DaTeC (column statically missed). The data indicate that
the imprecision in the outcome from the static technique is
dominated by the statically missed relations (false negatives)
over the never observed relations (potential false positives):
The data reported in the table indicate that about 96% of
all dynamically observed relations are missed by the static
technique, while about the 23% of the relations indicated by
the static analyzer are never exercised by the test cases.

The last two columns of the table further refine the datum
on the statically missed relations with the information that two
thirds of the statically missed relations include polymorphic
references (column impacted by polymorphism), while only a
limited amount of missed relations (12%) can be tracked to
the handling of arrays (column impacted by arrays).

To characterize in further detail our estimations of the
relative impact of the false positives and false negatives on the
(data flow) testing of the classes, we inspected the data for each
class. Figure 2 plots the distribution of the amount of data flow
relations that are missed and observed either statically or dy-
namically across the classes in our sample. Figure 2-a indicates
the amounts of data flow relations identified dynamically but
not statically (statically missed), the ones identified statically
but not dynamically (never observed), all the ones observed
dynamically and all the ones identified statically; Figure 2-b
plots the proportions of the statically missed relations over all
the observed ones, and of the never observed relations over
all the statically identified ones. We observe that the static
technique misses very large amounts (indeed between the 56%
and the 99%) of the relations that we observed dynamically
with DReaDs for the large majority of the classes (Figure 2-b),
while only a small portion of the statically identified relations
remain unseen after executing the test cases. The distributions
of the figures at the numerators of those proportions (Figure 2-
a) indicate that there are at most 3 never observed relations per-
class across the three fourths of the sample, and that DaTeC
misses up to 60 defs@exit per-class in the three fourths of
the classes with less missed relations.

Using the Student’s t-test, we found statistically significant
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Fig. 2. Distributions of the statically missed over the dynamically ob-
served defs@exit, and of the never observed over the statically identified
defs@exit, across the sample classes

support for the (alternative) hypotheses that the number of
statically missed relations exceeds by a factor of 2.4 the
number of occurring relations that are also statically identified
(p; = 0.0293), and exceeds by a factor of 4.2 the num-
ber of statically identified relations that are never observed
(p; = 0.0468) across the classes in our sample.

D. Discussion

The results of the study support a clear and negative answer
to the first research question about the ability of static data
flow techniques to approximate the universe of the data flow
relations, as stated at the beginning of this section, and confirm
the hypothesis of this paper on the limits of static data flow
techniques to identify test targets relative to actual data flow
relations. The empirical data indicate that the set of data
flow relations that can be identified statically is most likely
incomplete to a large extent. In other words, if we base data
flow testing on a static data flow technique, we must be aware
that we miss a considerable amount of data flow relations that
shall be accounted as test objectives.

With reference to the second research question about the
impact of false-positive and false-negative relations, as stated
at the beginning of this section, this study indicates that
the false negatives (statically missed, though existing data
flow relations) weight much more than the false positives
(statically identified, though infeasible data flow relations) on
the imprecision of the static data flow techniques.

Thus, this paper suggests that the most promising research
direction to improve the success of data flow testing is probably
to handle the huge amount of data flow relations that hide when
using the static techniques. And that is possibly counterintu-
itive with respect to what happens with other structural criteria,
like branch coverage, where the static coverage domain is
an over-approximation of the possible test objectives, and
therefore the challenge is to investigate the reachability of the
not yet covered elements.



TABLE II.

DEFS@EXTT IDENTIFIED WITH DATEC AND DREADS, WITH STATISTICS PER CLASS AND CUMULATIVE SIZE OF THE RESPECTIVE

DIFFERENCE SETS

dP7T: defstexit with DaTeC dPE: defstexit with DReaDs Never observed: Statically missed: Impacted by Impacted by

Application Total Q1 Median Qs Total Q1 Median Q3 #(e dPT A ¢ dPF) #(e dPEA ¢ dPT) polymorphism arrays
Jfreechart 20,513 2 9 38 89,415 3 18 75 3,480 (17%) 85,079 (95%) 47,968 (54%) 11,900 (13%)
Collections 3,908 2 4 12 63,460 4 26 81 1,779 (46%) 62,169 (98%) 55,295 (87%) 5,580 (9%)
Lang 1,227 2 3 14 1,638 2 5 13 409 (33%) 1,122 (69%) 605 (37%) 1 (0%)
Jtopas 1,481 3 12 16 8,380 6 39 320 600 (41%) 8,026 (96%) 5,085 (61%) 2,018 (24%)
JgraphT 1,800 2 4 16 6,602 1 7 44 505 (28%) 6,080 (92%) 5,259 (80%) 35 (1%)
[ 28,929 2 6 18 [ 169,495 3 17 68 6,773 (23%) | 162,476 (96%) 114,212 (67%) 19,534 (12%)

Following this idea, we believe that the DReaDs technique
that we introduced in this paper is an interesting candidate
to complement the static approaches in the context of a data
flow testing technique. We read the data collected in the
study as an initial body of evidence that the set of data flow
relations identifiable with DReaDs largely extends the data
flow information that can be identified statically. Extending
DReaDs for data flow testing is not straightforward and is a
major milestone of our future work.

As a consequence of the results presented in this paper, the
inconclusive results about comparing data flow and structural
testing approaches refer to a set of data flow relations identified
statically that do not represent the many data flow relations
that occur in object oriented programs. Finding a better way
to identify the possible data flow relations in object oriented
programs opens the way to new results about the mutual
effectiveness of data flow and structural testing criteria.

E. Threats to Validity

We are aware of threats to the internal, construct and
external validity of our study. The internal validity can be
threatened by a scarce control on factors that may influence
the results. The construct validity requires that the operational
implementation of the variables properly captures the intended
theoretical concepts, and that the measurements are reliable.
The external validity relates the generalizability of the findings.

The main internal threat in this study relies in the difficulty
of measuring the consistency of our results across different
implementations of static data flow techniques. In our study,
we refer to the technique embodied in DaTeC that implements
a mature and consolidated approach to data flow testing
of object oriented programs consistent with the approaches
proposed in the main recent studies on this topic. We already
commented on the range of design choices that can underlie the
implementation of a static data flow technique: As many other
static analyzers, DaTeC relies on both conservative choices,
like choices concerning the feasibility of statements, paths
or matching array offsets, and approximations due to the
impossibility of accounting for all alias relations, as needed in
particular to precisely solve polymorphic method calls. We are
aware that implementations of the data flow technique different
than DaTeC can lead to identify differently approximated sets
of data flow relations. The current unavailability of other
tools for inter-procedural data flow analysis of object oriented
programs inhibited us from extending our observations beyond
DaTeC. In the future, we aim to integrate DaTeC with different
types of alias analysis, to further validate our conclusions,
though, based on the compelling evidence gathered so far, we
hardly expect a confutation of the conclusions of this paper.

Another important internal threat to validity refers to how
well defs@exit reaching definitions appropriately represent
the objectives of data flow class testing. Classic data flow
class testing addresses the interactions (def-use relations) be-
tween the methods of a class that can define and use the
same class state variables, when invoked sequentially in a
test case [10]. We observe that identifying the defs@exit
reaching definitions is a pre-requisite for a static technique
to identify the def-use relations, since only the definitions
that reach the method exit may propagate to uses in other
methods. Thus, the set of defs@exit reaching definitions
well indicate the ability of identifying def-use interactions.
Measuring directly the def-use interactions would lead to less
interpretable results in our study. The reason is twofold. First,
since DaTeC computes the def-use relations by pairing the
defs@exit reaching definitions and the reachable uses of
the methods, after computing either information separately, the
imprecisions of the data flow analysis would be reflected with
combinatorial confounding effects in the measurements of the
def-use relations. Second, the def-use relations predicate on the
combined execution of pairs of methods, and this increases the
dependence of the dynamic data on the test suites, an effect
that our study aims to minimize.

A threat to the construct validity refers to the dependency
of the data flow relations that we observed dynamically in our
study on the test cases. We have executed all the test cases
bundled with the subject applications augmented with test
cases generated with the most popular open source automatic
test case generators. There is no indication that the bundled
test cases have been built with data flow testing in mind,
and neither the random nor the search-based tools used in
the experiment address data flow criteria directly. Thus, we
cannot exclude that our set of dynamic observations can
be incomplete. However, because the study reveals a huge
disproportion between the amounts of statically identified and
dynamically observed data flow relations, we are confident
that further (currently missed) dynamic observations would not
significantly alter the current results.

Another important threat to the construct validity refers
to the reliability of our measurements that depend on the
reliability of the data computed with DaTeC and DReaDs. We
extensively tested and used DaTeC over the last years. We
developed DReaDs only recently, and we have tested it by
manually inspecting the outcome produced on a sample of the
classes considered in this experiment.

The main threat to the external validity concerns the limits
of our subjects that include only open-source applications.
Thus, we shall restrict the scope of our conclusions to open-
source software. In general, we are aware that the results of
a single scientific experiment cannot be directly generalized.



We are currently planning replications of this study on further
applications and data flow techniques.

V. RELATED WORK

The empirical study discussed in this paper relates to
previous work on data flow testing and dynamic analysis.

Data flow analysis has been investigated since the late
sixties in many different contexts, starting from program
optimization [29] and computer architectures [30], [31], and
proposed for application to software testing since the mid
seventies [1], [2], [3], [4], [S]. More recently, the poten-
tial of data flow testing for enhancing the testing of object
oriented systems has increasingly attracted the attention of
researchers [10], [11], [12], [13], [14], [15], [23], [16].

The advantages of data flow testing have been investigated
and questioned in several experiments. In their classic papers,
Frankl and Weiss compared the “all-uses” data flow testing
criterion with the “all-edges” criterion, and found no evidence
that “’the probability that a test set exposes an error increases as
the percentage of definition-use associations or edges covered
by it increases” [6]. Hutchins et al. reported empirical evidence
that both data flow and branch testing can be more effective
than random testing, but the two criteria detect complementary
faults and none clearly outperforms the other. Other researchers
tackled the evaluation of the effectiveness of data flow testing
from a different angle, comparing between data flow and
mutation testing [17], [8], [9]. These experiments indicate
that satisfying mutation testing generally requires more test
cases than satisfying data flow testing, but data flow testing
is (almost) as much effective and thus preferable because
easier to satisfy. Recently, Hassan and Andrews provided
experimental data that indicate that "MPSC is comparable in
usefulness to def-use in predicting test suite effectiveness”,
where MPSC generalizes branch coverage to coverage of
tuples of branches [19]. Conversely, our as well as other
experiments indicate that data flow testing is indeed more
effective than classic control flow criteria when dealing with
inter procedural aspects [20], [32].

The potentiality of data flow testing in the presence of
inter procedural aspects is confirmed by the applications of
data flow testing to object oriented software, where the em-
phasis is on object interactions both at intra- and inter-class
levels. The class control flow graphs proposed by Harrold
and Rothermel [10] to capture intra-class relations of object
oriented programs, have been exploited by Buy et al. [12]
and Martena et al. [13] to define data flow testing approaches
for intra- and inter-class testing, respectively. The contextual
def-use associations introduced by Souter and Pollock [14]
led to data flow testing approaches that capture the structural
characteristics of object oriented designs [15], [16]. The need
to account for aliases and pointers may affect the precision of
these analyses [25].

In summary, the usefulness of data flow testing for object
oriented software is still debated, and the experimental data on
its effectiveness are yet inconclusive.

This paper contributes empirical evidence that the current
approaches to data flow testing of object oriented programs
(based on static techniques) are not well-grounded, in that

they overlook large amounts of the test objectives that shall
be pursued according to the theoretical definition of data flow
testing. On this basis, this paper questions the internal validity
of several previous experiments on the effectiveness of data
flow testing, and can explain to some extent why the reported
data have been contradictory and inconclusive so far.

The argument of this paper is grounded in the concrete
evidence of data flow relations that, though not identified
statically, occur when executing the programs. The paper
purposely introduces a dynamic analysis that pinpoints the data
flow relations that occur at runtime. The dynamic technique
DReaDs introduced in this paper relates to previous work
that applies dynamic analysis for detecting memory anomalies,
taint checking, program slicing, and back-in-time debugging.
Since the seminal work of Huang, several dynamic techniques
trace the accesses to the program variables to pinpoint anoma-
lous uses of the memory, such as, never used values, reads from
undefined locations, out of bounds array accesses and memory
leaks [33], [34], [35]. Dynamic taint analysis identifies the
statements that access unchecked inputs, and is exploited by
automatic test generators to focus security vulnerabilities in the
code [36], [37], [38]. Existing approaches to program slicing
leverage data dependencies observed at runtime [39], [40],
[41]. Memory graphs similar to the ones used in DReaDs
have been used to support program comprehension tasks and
advanced functionalities of debuggers [42], [43]. To the best of
our knowledge, DReaDs is the first attempt to trace data flow
relations at the same level of abstraction of static techniques,
thus enabling comparability between static and dynamic data.

VI. CONCLUSIONS

This paper investigates the effectiveness of static data
flow analysis for data flow testing, focusing the ability of
classic data flow approaches to identify the proper set of data
flow relations in an object oriented program. Our underlying
assumption is that the usefulness of data flow testing depends
on the the ability of approximating well the set of data flow
relations that can be observed in the program execution, and
we show that static data flow techniques miss many data flow
relations that actually occur. Thus, we shall find a way to better
approximate the data flow relations entailed by programs to
properly evaluate data flow testing approaches.

In this paper, we focus on object oriented programs, and
in particular on the data flow relations that involve reaching
definitions of class state variables, and we compare the data
flow relations identified with classic static data flow techniques
with the data flow relations dynamically revealed during
the execution. We introduce a dynamic technique to collect
the reaching definitions of the class state variables, and we
compare the set of dynamically identified definitions with the
corresponding set of definitions computed with a state-of-the
art approach based on static data flow analysis.

Surprisingly, the experimental results discussed in the paper
indicate that the amount of actual data flow relations missed
with the static data flow approach (false negatives) largely
overruns the amount of possibly infeasible data flow relations
identified by the same approach (false positives). This results
indicate that research on data flow testing shall focus more on
techniques to (dynamically) identify data flow relations than
on the techniques to rule out false negatives.
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