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ABSTRACT
Software components are usually redundant, since their in-
terface offers different operations that are equivalent in their
functional behavior. Several reliability techniques exploit
this redundancy to either detect or tolerate faults in soft-
ware. Metamorphic testing, for instance, executes pairs of
sequences of operations that are expected to produce equiv-
alent results, and identifies faults in case of mismatching
outcomes. Some popular fault tolerance and self-healing
techniques execute redundant operations in an attempt to
avoid failures at runtime. The common assumption of these
techniques, though, is that such redundancy is known a priori.
This means that the set of operations that are supposed to
be equivalent in a given component should be available in
the specifications. Unfortunately, inferring this information
manually can be expensive and error prone.

This paper proposes a search-based technique to synthesize
sequences of method invocations that are equivalent to a
target method within a finite set of execution scenarios.
The experimental results obtained on 47 methods from 7
classes show that the proposed approach correctly identifies
equivalent method sequences in the majority of the cases
where redundancy was known to exist, with very few false
positives.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs

General Terms
Measurement, Verification
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Redundancy, equivalent method sequences, search-based soft-
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1. INTRODUCTION
The presence of equivalent code fragments, for example

methods or method sequences, make modern software sys-
tems redundant. Informally, two methods are equivalent
if they produce indistinguishable results when called with
proper parameters. This is the case, for instance, of methods
put() and putAll() in the Google Guava class AbstractMul-
timap.1 They produce indistinguishable results when putAll()
is called with a collection containing the single value passed
to put(). Beside interchangeable methods, as in the previous
example, it is possible to obtain equivalent executions by
combining several method invocations. For example, method
pop() of class Stack in the Java standard library is equivalent
to the method sequence remove(size()-1). Indeed, remov-
ing the element on top of the stack (pop()) leads to the
same result as removing the element in the last position
(remove(size()-1)).

This form of redundancy should not be confused with
what are usually referred to as code clones. Code clones
are typically the result of bad design and implementation
practices, such as copy and paste, and indicate the need
of code refactoring [16]. Instead, the redundancy described
above is the result of good design practice, as it aims to
offer a richer API to client components and to increase code
reusability.

While in some cases redundancy exists only at the interface
level, it often extends to the underlying code. For example,
the code of methods pop and remove is substantially different,
as shown in Figure 1. The difference in the implementation
extends even to removeElementAt, which is invoked by pop,
since it does not use the code of remove. We omit the code
of removeElementAt for lack of space.

Recent studies indicate that redundancy is widely spread
in software systems. Jiang and Su studied the Linux kernel
and found more than 600,000 semantically equivalent code
fragments [22], while Carzaniga et al. found more than 4,000
equivalent methods or method sequences in Java applications
and libraries of non trivial size and complexity, including
Apache Ant, Google Guava, Joda-Time and Eclipse SWT [5].

Equivalent method sequences find many useful applications,
from the automatic generation of test inputs [8], to the design
of self-healing systems [5, 6, 7], and the automatic generation
of test oracles [4]. In all these applications, the equivalence
is exploited automatically, but must be identified manually.
The manual identification of equivalent method sequences is
a non-trivial and error prone activity that may represent an
obstacle to the practical applicability of these techniques.

1https://code.google.com/p/guava-libraries



1 public E pop() {
2 E obj;
3 int len = size();
4 obj = peek();
5 removeElementAt(len − 1);
6 return obj;
7 }

1 public E remove(int index) {
2 if (index >= elementCount)
3 throw new ArrayIndexOutOfBoundsException(index);

5 E oldValue = elementData(index);
6 int numMoved = elementCount − index − 1;
7 if (numMoved > 0)
8 System.arraycopy(elementData,
9 index+1, elementData, index, numMoved);

10 elementData[−−elementCount] = null;
11 return oldValue;
12 }

Figure 1: Methods pop and remove of class Stack from the Java Standard Library

In this paper we propose a search-based technique that
can automate this activity. Given a target method and an
initial set of execution scenarios, our technique automatically
synthesizes method sequences that are likely-equivalent to the
target method. The synthesized method sequences are equiv-
alent with respect to the set of execution scenarios, and are
expected but not guaranteed to be equivalent in the general
case. The synthesis proceeds in two phases: In the first phase,
the search goal is to synthesize a candidate method sequence
to be likely-equivalent to the target method; In the second
phase, the search goal is to synthesize a counterexample
showing that the candidate method sequence is not equiv-
alent to the target method on some previously unexplored
scenarios. The two phases iterate, with the counterexamples
added to the execution scenarios, until the second phase fails
to find a new counterexample. At this point, the synthesized
method sequence is deemed as likely-equivalent to the target
method.

The technique is fully automatic and requires only as few
as one test input (the initial execution scenario) that may be
either provided by the developers or generated automatically.
Our experiments indicate that the technique is effective in
synthesizing equivalent method sequences, and at the same
time is reasonably efficient. On 47 methods belonging to
7 different classes for which equivalent method sequences
were known a priori, our approach synthesizes 87% of the
known equivalences, finding one or more equivalent sequences
for each target method, with few false positives and within
reasonable execution time.

This paper is organized as follows: Section 2 introduces the
concepts of software redundancy and equivalent sequences,
and provides some basic terminology used throughout the
paper. Section 3 overviews the essential characteristics of
search-based engineering to make the paper self-contained.
Section 4 presents our approach in detail. Section 5 discusses
the validity of the proposed technique, referring to some
experiments conducted on relevant case studies. Section 6
overviews the related work. Section 7 summarizes the results
presented in the paper and illustrates our future research
plans.

2. SOFTWARE REDUNDANCY
A software system is redundant if the execution of different

methods or combinations of methods leads to indistinguish-
able results, albeit executing totally or partially different
code. Two executions lead to indistinguishable results if they
produce the same output and lead to states that cannot be
differentiated by further interacting with the system. Intu-

itively, we are considering a type of observational equivalence
where the states produced by the executions may be inter-
nally different but not externally distinguishable by probing
the system through its public interface [21].

For example, both methods pop() and remove(size()-1) of
the Java class Stack return the object on top of the stack
and leave the stack without the top object. They produce
indistinguishable results, but execute different code, as illus-
trated in Figure 1. We say that two methods or combinations
of methods are equivalent if they produce indistinguishable
results for all possible inputs, as in the previous example.

A method is trivially equivalent to itself and to an exact
copy of itself. However, in this paper we are interested in
methods or combinations of methods that are equivalent but
execute at least partially different code—as in the example
of pop() and remove(size()-1)—because of the interesting
applications in the area of software testing and self-healing.

Redundancy can be explicitly added to a software system
to increase reliability, or may be due to modern design prac-
tices that span from backward compatibility to the inclusion
of overlapping libraries and design for reusability [7]. A
library might maintain different versions of the same com-
ponent to ensure compatibility with previous versions. For
example, Java 7 contains at least 45 classes and 365 methods
that are deprecated and that overlap with the functional-
ity of newer classes and methods. Modern development
practices naturally induce developers to use reusable compo-
nents that already implement the needed functionality. It is
common to find several components that provide similar or
identical functionalities. For instance, the Trove4J library
implements collections specialized for primitive types that
overlap with the Java standard library. Yet another form of
redundancy is due to performance optimization. For exam-
ple, the GNU Standard C++ Library implements its basic
stable sorting function using the insertion-sort algorithm for
small sequences, and merge-sort for the general case.

Although all kinds of intrinsic redundancy that concretize
in equivalent code fragments are interesting, in this work we
focus on equivalent methods and combinations of methods
in the same component.

In this paper, we present a technique that synthesizes
equivalent methods or combinations of methods by exploit-
ing search-based metaheuristics. We synthesize equivalences
by examining the program behavior on a finite set of exe-
cution scenarios, and we refer to the synthesized methods
or combinations of methods as likely-equivalent, to indicate
that they may behave differently for inputs not considered
in the synthesis process.



3. SEARCH-BASED ENGINEERING
Search-based software engineering is an emerging field

that consists in applying search-based algorithms to software
engineering problems [18]. In the last years, search-based
engineering has produced interesting results especially in
the area of automatic test case generation, where Genetic
Algorithms (GAs) play a dominant role mostly because of
their good performance [25].

GAs are inspired by the natural laws of evolution discov-
ered by Charles Darwin, and in particular by the “survival of
the fittest” principle. Informally, GAs look for approximate
solutions to optimization problems whose exact solutions
cannot be obtained at acceptable computational cost. In
a nutshell, a GA aims to either minimize or maximize the
value of a fitness function that quantifies the distance of
the candidate solutions from optimality. Each candidate
solution of the problem is encoded in what we refer to as
a chromosome. A population is a set of chromosomes that
iteratively evolves through generations by means of genetic
operators. Genetic operators select and evolve candidate
solutions to produce new “fitter” chromosomes. The genetic
operators commonly employed in GAs have two objectives.
First, they select chromosomes with the best fitness values,
that is those candidate solutions to be preserved in the next
generation. Second, they create new chromosomes by in-
troducing variations in a candidate solution, for example
through chromosome mutation and crossover. GAs termi-
nate when they either find the desired solution or exhaust
the time budget for the search, and return the best solution
found during the evolution process.

To apply GAs to a problem, it is necessary to define (i) a
representation of a candidate solution as chromosome, (ii) a
fitness function, defined on the basis of the chosen candidate
representation, and (iii) a set of genetic operators.

GAs have been successfully used to generate test cases for
both procedural [27] and object-oriented software systems [15,
30]. GAs transform the problem of generating test cases
into the problem of searching for inputs that maximize the
coverage metrics associated with the chosen test adequacy
criterion, for instance branch coverage.

When generating test cases for object-oriented systems, a
chromosome is a combination of invocations of constructors
and methods terminated with the invocation of the method
under test. Primitive types are generated randomly, while
the objects needed for the final call are generated by invoking
their constructors. Intermediate method calls are introduced
in a chromosome to change the internal state of an object.

Some mutation operators are general, for example the
mutation of a primitive value, while others are designed
specifically to manipulate method sequences by inserting,
removing or replacing method calls. Differently from mu-
tation operators, which are applied to single chromosomes,
the crossover operator combines pairs of chromosomes, for
instance by swapping their suffixes.

The fitness function commonly employed in the literature
to maximize branch coverage is the sum of the approach level
and the branch distance. The approach level rewards those
executions that get close to the target branch, referring to
the control flow graph, while the branch distance quantifies
heuristically the distance of a condition from the opposite
boolean value [25]. By evolving iteratively over generations,
GAs produce test cases with increasing fitness values, until
either all branches are covered, or a time limit is reached.

4. SYNTHESIS OF EQUIVALENT
METHOD SEQUENCES

We exploit search-based algorithms, and in particular GAs,
to synthesize a sequence of method invocations that is likely-
equivalent to a target method m by means of a two-phase
iterative process. We start with an initial non-empty set
of execution scenarios that represent a sample of the input
space of m. The initial execution scenarios may be as simple
as a single test case. In the first phase, we use GAs to
generate a likely-equivalent candidate eq for the given set of
scenarios. In the second phase, we validate eq by using GAs
to find a counterexample, which corresponds to an execution
scenario for which eq and m behave differently. If we find a
counterexample, we add it to the set of execution scenarios,
and we iterate through the first phase looking for a new
candidate eq. Otherwise, we have successfully synthesized a
method sequence eq that is likely-equivalent to m. Method
m may be equivalent to many different method combinations.
Therefore, once an equivalent method sequence has been
synthesized, we incrementally remove the methods used in
the synthesized sequence from the search space, and we
iterate looking for further equivalences.

The process for identifying a likely-equivalent method
sequence for a target method m is detailed in Algorithm 1.
The algorithm needs a non-empty set of execution scenarios
for m. If the method comes with one or more test cases, the
algorithm uses them, otherwise it generates an initial set of
execution scenarios (line 1), and then iterates over the two
phases (lines 2-13).

The first phase is detailed with function find-equivalent
(lines 14-29). The search-based algorithm is employed to
generate a sequence of method invocations that is likely-
equivalent to the input method m for the current set of
execution scenarios. The algorithm iteratively generates a
candidate sequence of method invocations (line 16), and
evaluates the equivalence of the synthesized sequence with
m for all the executions e in the set of execution scenar-
ios (lines 18-23). If the candidate is equivalent to m for all
the execution scenarios, the phase terminates and returns
the candidate (line 25). Otherwise, the algorithm discards
the candidate and generates a new one, which will then
be evaluated for all the execution scenarios. The function
equivalent compares the object attributes and the return
values obtained by executing the original method m and the
candidate method sequence on a given execution scenario.
If no candidate equivalent sequence is found within a given
time bound, the first phase terminates (line 28), and the
whole algorithm terminates as well (line 5).

The second phase is detailed in function find-counter-
example (lines 30-38). During this phase the algorithm
validates the candidate through the exploration of new sce-
narios in the attempt to violate the equivalence between
m and the candidate equivalent sequence synthesized after
the first phase. The search for a counterexample terminates
when either a counterexample is found (line 34), or the search
budget expires (line 37). If this process produces a coun-
terexample, then the candidate is deemed as not equivalent
to m and the second phase terminates.

The algorithm iterates from the first phase adding the
counterexample to the execution scenarios. The main itera-
tion (line 2-13) terminates when a timeout expires and the
algorithm fails in synthesizing an equivalent sequence (line 5).



Algorithm 1 Synthesis of an equivalent method sequence.

INPUT: m
1: execScenarios := load-initial-ts
2: while time < overall-time-limit do
3: candidate := find-equivalent(m,execScenarios)
4: if candidate is NIL then
5: return NIL
6: end if
7: counterex := find-counterexample(m,candidate)
8: if counterex is NIL then
9: print(candidate)

10: remove-calls(candidate)
11: end if
12: add counterex to execScenarios
13: end while

14: function find-equivalent(m,execScenarios)
15: while time < time-limit do
16: candidate := synthesize-equivalent-calls
17: candidateFound := true
18: for each e in execScenarios do
19: if ¬equivalent(m,candidate,e) then
20: candidateFound := false
21: break
22: end if
23: end for
24: if candidateFound then
25: return candidate
26: end if
27: end while
28: return NIL
29: end function

30: function find-counterexample(m,candidate)
31: while time < time-limit do
32: counterex := synthesize-counterexample
33: if ¬equivalent(m,candidate,counterex) then
34: return counterex
35: end if
36: end while
37: return NIL
38: end function

If the algorithm cannot produce new counterexamples, it
prints the likely-equivalent sequence (line 9), removes the
method calls used in the synthesis of the candidate (line 10),
and iterates to synthesize new equivalent sequences.

We implemented the algorithm illustrated above in a Java
prototype tool called SBES (Search-Based Equivalent Syn-
thesis). Figure 2 shows the main components of SBES, which
exploits EvoSuite as search-based engine. The Execution Sce-
narios Generator generates a set of execution scenarios by
invoking EvoSuite. The Stub Generator creates a modified
version of the target class by removing the target method m
to enable the synthesis of equivalent sequences. The Driver it-
eratively invokes EvoSuite to synthesize equivalent sequences
and to search for counterexamples.

EvoSuite natively supports the generation of test cases
with method calls, constructors, arrays of random length, and
primitive values. We modified EvoSuite to better deal with
arrays of given length and values. Currently EvoSuite does
not generate some arithmetic operators, loops and conditional
statements, and thus our current prototype implementation

Figure 2: Main components of SBES

cannot synthesize equivalent sequences that contain these
constructs. In the next sections we detail the key components
of SBES, and describe the generation process.

4.1 Initialization: Execution Scenarios
Deciding whether two methods are equivalent for all the

possibly infinite execution scenarios is an undecidable prob-
lem. However the problem becomes tractable by limiting
the number of scenarios to a finite set. We thus synthesize a
method sequence to be equivalent to a target method m by
comparing the functional behavior of m and the candidate
sequence on a finite set of execution scenarios. Execution
scenarios can be either provided by developers, typically in
the form of a test suite for the target method m, or can be
generated automatically with tools such as Randoop and
EvoSuite [14, 26].

In our experiments we used test suites when available, and
we generated the execution scenarios with EvoSuite other-
wise [14]. EvoSuite generates and evolves test suites in the
attempt to cover a set of target branches through the invoca-
tion of any accessible method. Since the tool may generate
method invocations that call the target method m indirectly,
we modified EvoSuite forcing every generated execution to
include an explicit call to m as its last statement.

In the context of Java programs, an execution scenario is
a sequence of method invocations that generates objects by
means of constructors, operates on such objects by means
of public and protected methods, and terminates with an
invocation of method m. The following method sequences
are two examples of valid execution scenarios for the pop()
method of the Stack class:

<Stack s=new Stack();s.push(1);int result=s.pop();>

<Stack s=new Stack();s.push(1);s.push(1);int result=s.pop();>

4.2 First Phase: Candidate Synthesis
The first phase synthesizes a sequence of method invoca-

tions that is equivalent to the target method m on a set of
execution scenarios. For this task, the prototype relies on
the Stub Generator and the Driver components. The Stub
Generator creates a stub for the target class, namely the
class that includes the declaration of the method m. The
stub class encloses all the execution scenarios, and evaluates
the equivalence between the target method and the synthe-
sized candidate sequence. The Driver iteratively synthesizes
method sequences by invoking EvoSuite, and uses the stub
class to evaluate whether the generated sequence is equivalent
to the target method m.

Given a class C that declares the target method m, the Stub
Generator produces a new stub class C Stub that contains
the following core elements:



expected states is an array containing one object of type C
for each execution scenario. This data structure stores
the state of these objects after the execution of each
scenario.

expected results is an array containing the return values
of each execution scenario on the target method m.

actual states is an array containing one object of type
C for each execution scenario. This data structure
stores the state of the objects after the execution of
the synthesized method sequence on each scenario.

actual results is an array containing the return values of
the execution of the synthesized method sequence on
each scenario.

custom methods the stub class declares every method orig-
inally declared in class C and every method that C
inherits from any of its superclasses. Each of these cus-
tom methods simply invokes the corresponding original
method of C on every object in the actual states array
and returns the corresponding return values of such
executions in the form of an array.

class constructor the constructor of the stub class invokes
each scenario on the objects stored in expected states,
and stores the results in expected results. Similarly, it
invokes all the methods of each scenario on the objects
stored in actual states. These latter invocations do not
include calls to the target method m.

set results method is a utility method that stores the re-
turn values of the synthesized sequence in actual results.

method under test is the target method for the search-
based test case generator. It contains a single branch,
whose condition asserts the equivalence of method m
and the synthesized sequence with respect to all the exe-
cution scenarios. The equivalence considers both the ob-
ject states, as stored in expected states and actual states,
and the return values, as stored in expected results and
actual results.

Figure 3 shows the automatically generated stub for the
Stack class in the Java standard library. Given the two
execution scenarios presented in Section 4.1, the stub class
declares two arrays of length 2 for the expected and the actual
object states, and two arrays of length 2 for the expected
and the actual execution results. The constructor at line 7
executes both scenarios and stores states and results in the
expected states and expected results arrays, respectively. The
actual states array contains the object states obtained by
applying each execution scenario up to the invocation of the
target method (for example, pop() in the running example).

Method push (line 25–30) is an example of how the stub
generator redirects the invocations of the methods of the
Stack class to the objects stored in actual states. Such redi-
rections occur for every method that was originally declared
in the Stack class, with the exception of the target method
pop.

The method method under test at line 32 is the main driver
for the synthesis of a candidate equivalent sequence. By
generating an execution that covers the true branch of this
method, we obtain a method sequence that is equivalent
to the target method in all the considered scenarios. We

1 class Stack Stub {
2 Stack exp state[2] = new Stack[2];
3 int exp result[2] = new int[2];
4 Stack act state[2] = new Stack[2];
5 int act result[2] = new int[2];

7 public Stack Stub() {
8 // execution scenario 1
9 exp state[0] = new Stack();

10 exp state[0].push(1);
11 exp result[0] = exp state[0].pop();
12 act state[0] = new Stack();
13 act state[0].push(1);

15 // execution scenario 2
16 exp state[1] = new Stack();
17 exp state[1].push(1);
18 exp state[1].push(1);
19 exp result[1] = exp state[1].pop();
20 act state[1] = new Stack();
21 act state[1].push(1);
22 act state[1].push(1);
23 }

25 public int[] push(int item) {
26 int res[2];
27 for (int i = 0 ; i < 2 ; i++)
28 res[i] = act state[i].push(item);
29 return res;
30 }
31 ...
32 public void method under test() {
33 if (distance(exp state[0], act state[0])==0 &&
34 distance(exp state[1], act state[1])==0 &&
35 distance(exp result[0], act result[0])==0 &&
36 distance(exp result[1], act result[1])==0)
37 ; // target
38 }

40 public void set results(int res[]) {
41 for (int i = 0 ; i < 2 ; i++)
42 act result[i] = res[i];
43 }
44 }

Figure 3: The stub automatically generated for the
Stack class of the Java standard library

generate such sequence with EvoSuite [14], which has been
modified so that its only goal is to cover the true branch of
method under test.

The generation of likely-equivalent method sequences is
guided by the fitness function that quantifies the distance
of each candidate sequence from satisfying the condition at
lines 33-36. Since the condition is a conjunction of atomic
clauses, the fitness function is the sum of the branch distances
for each single clause, so that the overall distance is zero when
all the clauses evaluate to true. In turn, the branch distances
for the atomic clauses are computed as numeric, object or
string distances, depending on the involved types. When
the distance involves objects, the search-based algorithm
cannot guide the evolution, since comparing objects with
the boolean method equals flattens the fitness landscape [19].
To overcome this problem, we resort to an object distance
that quantifies the difference between two objects, similarly
to what ARTOO [9] and RECORE [29] implement. Such
notion of equivalence between objects is stronger and in fact
implies the notion of behavioral equivalence.



The Driver component of our tool controls all the elements
described so far, and drives the whole process towards the
synthesis of a candidate equivalent sequence as follows: (i) it
generates the initial set of scenarios by means of the Execution
Scenarios Generator, or it loads the initial scenarios if these are
available, (ii) it generates the stub class, and (iii) it invokes
EvoSuite to generate a sequence of method invocations that
tries to cover the target branch in method under test, after
saving the results of the execution by calling set results.

In an attempt to find an equivalent sequence for method
pop of class Stack, the driver may generate the following
sequence of method calls:

1 Stack Stub x0 = new Stack Stub();
2 int x1[] = x0.remove(0);
3 x0.set results(x1);
4 x0.method under test();

which in turn can be automatically transformed into the
candidate sequence:

stack.pop() ≡ stack.remove(0)

This candidate expresses the equivalence between pop(),
which removes the object on top of the stack and returns such
object, and remove(0), which removes the first element in the
stack and returns it. This equivalence holds only because the
first and the last elements in the two scenarios considered
above are the same (two integer values equal to 1). This
equivalence, though, does not hold in other scenarios. The
next section describes how the second phase can invalidate
such a spurious candidate.

4.3 Second Phase: Candidate Validation
The second phase validates the candidate equivalence syn-

thesized in the first phase by considering other execution
scenarios. More precisely, this phase aims to identify a sce-
nario for which the equivalence does not hold.

Similarly to the first phase, the prototype automatically
generates a method under test containing a single branch
asserting the non equivalence between method m and the
synthesized candidate sequence. The prototype then auto-
matically includes such method in the declaration of class C.
For instance, this is how our SBES prototype automatically
transforms class Stack:

1 class Stack {
2 public int pop() {...}
3 public int push(int item) {...}
4 ...
5 public void method under test() {
6 Stack stack = deepClone(this);
7 int expect = this.pop();
8 int actual = stack.remove(0);
9 if (distance(this,clone)>0 || distance(expect,actual)>0)

10 ; // target
11 }
12 }

Similarly to the first phase, we exploit EvoSuite to auto-
matically generate an execution covering the target branch
(line 13), hence generating a counterexample for the equiv-
alence. The original method pop is applied on object this,
while the candidate sequence is applied to a clone of object
this. We rely on a deep clone library to create exact copies
of the current state of the object. This operation is crucial
to avoid spurious results, since not all classes may contain a
sound and complete implementation of the optional method
clone().

For the Stack example, EvoSuite might produce the fol-
lowing method sequence in an attempt to cover the true
branch of method under test:

1 Stack x0 = new Stack();
2 x0.push(2);
3 x0.push(1);
4 x0.method under test();

which indeed provides a scenario that shows that the equiv-
alence between pop() and remove(0) does not hold. In this
scenario the first and the last elements in the Stack are dif-
ferent, and consequently the two operations have different
effects on the Stack. As described in Algorithm 1, the pro-
cess iterates, and the synthesis of a new candidate takes into
account also the new execution scenario:

<Stack s=new Stack();s.push(2);s.push(1);int result=s.pop();>

In the second iteration of the first phase for this exam-
ple, the stub considers three scenarios, and the size of all
the arrays and the branch conditions to cover are updated
accordingly.

The new iteration of the first phase may generate the
following method sequence that covers the new target branch:

1 Stack Array x0 = new Stack Array();
2 int x1[] = x0.size();
3 int x2[] = ArrayUtils.add(x1, −1);
4 int x3[] = x0.remove(x2);
5 x0.set results(x3); x0.method under test();>

thus producing the following new candidate:

stack.pop() ≡ int x0 = stack.size();
int x1 = x0-1;
result=stack.remove(x1)

In this new iteration the search for a counterexample times
out, and the synthesis process outputs the likely-equivalent se-
quence. Since a method can be equivalent to a code fragment
that combines more than one method, SBES incrementally
removes the methods used in the currently synthesized se-
quence from the stub. At each iteration SBES repeats the
search process for each newly generated stub to obtain further
equivalent sequences, when more exist.

5. EXPERIMENTAL EVALUATION
The evaluation of our work aimed to answer the following

research questions:

RQ1 recall: Can the proposed approach correctly identify
equivalent method sequences?

RQ2 precision: How often does the proposed approach
wrongly identify non-equivalent method sequences as
equivalent?

RQ3 performance: How efficiently can the proposed ap-
proach identify equivalent method sequences and coun-
terexamples?

RQ4 role of counterexamples: How often do counterex-
amples correctly discard method sequences that are not
equivalent to the target one?

Research questions RQ1 and RQ2 deal with the effective-
ness of the proposed approach by considering its ability to



retrieve known equivalences (recall) and to report them with
few false positives (precision). RQ3 deals with the efficiency
and the practical applicability of the approach. RQ4 val-
idates the need for the second phase of the approach to
generate counterexamples and eliminate sequences that were
at first wrongly identified as equivalent.

To answer RQ1 and RQ2 we resorted to the standard recall
and precision metrics:

Recall = true positives
true positives+false negatives

Precision = true positives
true positives+false positives

Recall is defined as the ratio between the number of equiva-
lent sequences correctly synthesized with the approach (true
positives) and the total number of equivalent sequences,
which include both the ones correctly synthesized (true pos-
itives) and the ones that the approach fails to synthesize
(false negatives).

Precision is defined as the ratio between the number of
equivalent sequences correctly synthesized with the approach
(true positives) and the total number of sequences deemed
as equivalent, which include both the equivalent ones (true
positives) and the non-equivalent ones erroneously identified
as equivalent by the approach (false positives).

To answer RQ3, we measured performance as the time
required to synthesize an equivalent sequence and the time
required to find a counterexample, since these two measures
directly influence the overall performance of our approach.
We use these two values to compute the optimal timeouts.
In fact, we acknowledge a synthesized sequence as likely-
equivalent to the target method when no counterexamples
are found within a given timeout. The maximum time re-
quired to find a counterexample indicates the optimal value
for the counterexample timeout: a smaller value would lead
to missing some counterexamples, a larger value would cause
time waste. Similarly, the maximum time required to synthe-
size a sequence indicates the optimal synthesis timeout, that
is, the value that avoids missing sequences without wasting
time.

For RQ4, we measured the role of counterexamples as
the number of method sequences identified as candidates for
equivalence that the counterexamples discard as false posi-
tives. This number corresponds to the number of iterations
between the second and the first phase, since discarding a
sequence results in re-executing the first phase.

5.1 Experimental setup
The first target of our experiments is class Stack, taken as a

representative for the various containers available in the Java
standard library.2 Class Stack is particularly challenging
because it contains many generics and many non trivial
equivalent method sequences. We also considered a set of
classes from Graphstream, a library to model and analyze
dynamic graphs.3

Our experiments cover 15 methods of class Stack and 32
methods belonging to 6 classes of Graphstream, as reported
in Table 2. Stack and Graphstream represent different appli-
cation domains, are developed and maintained by different

2http://docs.oracle.com/javase/7/docs/api/java/util/Stack.-
html
3http://graphstream-project.org/

third party subjects, and include all the language charac-
teristics that we can currently handle with EvoSuite, which
constrains our prototype implementation.

We ran the experiments by feeding the prototype with
the class under analysis, the target method and an initial
scenario. The target method is the method of the class under
analysis for which we would like to synthesize equivalent
method sequences. The initial scenario consists of one test
case that was either extracted from the existing test suite,
or generated automatically with EvoSuite, depending on the
availability of the test suites. We gave a search budget of
180 seconds to both the first and the second phase.

To answer RQ1 and RQ2 we compared the sequences that
we synthesized automatically against the set of sequences
that we previously identified with manual inspection within
the limits of the current prototype. In theory, the amount of
equivalent sequences would be infinite, since we can easily
combine simple equivalent sequences to obtain new ones. For
example, method pop() is equivalent to remove(size()-1), but
is also equivalent to push() pop() remove(size()-1). In our
experiments we considered only minimal equivalences that
we informally identify as those that cannot be derived by
suitably combining simpler equivalences or adding method
calls with a globally null effect, as the pair push() pop() in
the previous example.

In our experiments, we synthesized equivalent method se-
quences for single methods only. Synthesizing equivalent
sequences for method sequences does not change the prob-
lem, but simply augments the size of the experiment. Our
automatic synthesis is limited by EvoSuite that can deal
with method calls, constructors, primitive values and arrays,
but not with all the arithmetic operators, loops and con-
ditional statements. These limitations are inherited from
EvoSuite itself, and do not belong to the approach that can
synthesize equivalent sequences for general method sequences,
potentially exploiting all language constructs.

We repeated the experiments 30 times because of the
random nature of search-based algorithms, and we considered
both the maximum, averaged and cumulative results over
the 30 executions. The maximum result is the one obtained
from the best execution, while the average result gives the
result expected from a single execution. The cumulative
result aggregates results from all 30 executions.

The execution environment provides a listener that logs
detailed information about the timing of the events. Each
iteration consists of creating a stub, compiling and executing
it. The listener logs the compilation and execution time,
recording the execution time of both the prototype and Evo-
Suite. These data allowed us to compute all the performance
metrics discussed above.

5.2 Results
In this section we discuss the experimental results.4 We

ran our prototype on 47 methods of 7 classes taken from the
Stack Java Standard Library and the Graphstream library. We
automatically synthesized 123 equivalent method sequences,
which represent more than 87% of the 141 sequences that
we manually identified ahead by inspecting the classes doc-
umentation. We considered only the minimal equivalences,

4A replication package, containing both the subjects and
the data collected during our experiments, is available at
http://star.inf.usi.ch/sb-synthesis



Table 1: Sample sequences synthesized with SBES
Original sequence Synthesized sequence

java.util.Stack

addElement(Object e)

add(e)
push(e)
add(e,size())
Collection c=new Collection();
c.add(e); addAll(c);

clear()

removeAllElements()
setSize(0)
Collection c=new Collection();
retainAll(c);

e = pop()
e=peek(); index=size()-1;
removeElementAt(index);

e = set(int i, Object o)
e=remove(i);
insertElementAt(o,i)

org.graphstream.graph.implementations.Edge

getSourceNode()
temp=getTargetNode();
getOpposite(temp)

getTargetNode()
temp=getSourceNode();
getOpposite(temp)

org.graphstream.graph.implementations.SingleNode

getAttribute(String s) getAttribute(s,Object.class)

org.graphstream.ui.geom.Vector2

fill(double d)

Vector2 v=new Vector2();
v.set(d,d); copy(v);
Point2 p=new Point2(d,d);
set(p.x, p.y);
scalarAdd(d)

org.graphstream.ui.geom.Vector3

copy(Vector3 v)
Point3 p=new Point3();
p.move(v); set(p.x,p.y,p.z)

and we excluded those that could not be found due to the
limitations of our prototype.

Table 1 presents a sample of the equivalent sequences that
we synthesized automatically. SBES can synthesize both
simple equivalences, e.g. methods that can be replaced in-
terchangeably, and complex equivalences that include non
trivial combinations of method calls, as in the case of Collec-
tion c=new Collection(); c.add(e); addAll(c); that is equivalent
to addElement(e).

Table 2 summarizes the experiment results. For each of the
analyzed methods, the table shows the following information:
(i) the number of minimal equivalent sequences identified
with manual inspection (column Tot), which we use as base-
line, (ii) the amount of equivalent sequences automatically
synthesized in at least one run (column Maxt), (iii) the max-
imum amount of equivalent sequences synthesized with a
single run (column Maxr), (iv) the average amount of equiva-
lent sequences identified in the 30 runs (column Avg), (v) the
precision (Prec) and the recall (Rec) computed over the 30
runs.

Table 2 shows that in all those cases where a target method
has multiple equivalent sequences our approach can synthe-
size a substantial fraction—if not all—of the equivalences,
even within a single run. This is a very interesting result,
since all of the practical applications of redundancy typically
benefit from a high level of redundancy [4, 5, 6, 7]. In the
Stack case study, when SBES was not able to synthesize all
the manually identified equivalences, we observed that some-
times the correct equivalent sequence was indeed synthesized
during the evolution of the individuals. However, the objects
holding the correct results were not used as parameters of
the set results method, and therefore the search did not stop.

Table 2: RQ1, RQ2: Effectiveness of the approach

Case Study Tot
Synthesized

Prec Rec
Maxt Maxr Avg

java.util.Stack

add(int,Object) 2 2 2 0.43 1.00 1.00

add(Object) 6 3 3 2.10 1.00 0.50

addElement 6 4 3 2.17 1.00 0.70

clear 3 3 3 2.77 0.99 1.00

elementAt 1 1 1 0.90 0.79 1.00

firstElement 2 2 2 1.57 0.89 1.00

get 1 1 1 0.80 0.80 1.00

indexOf 2 2 2 1.70 0.93 1.00

lastElement 4 2 2 1.17 0.97 0.50

peek 2 2 2 1.23 0.97 1.00

pop 2 2 2 0.60 1.00 1.00

push 6 2 2 2.00 1.00 0.33

remove(Object) 4 2 1 0.80 0.92 0.50

remove(int) 2 2 2 0.70 1.00 1.00

set 2 2 2 0.50 0.65 1.00

org.graphstream.graph.Path

getEdgeCount 2 2 2 1.80 0.73 1.00

getNodeCount 3 3 3 2.77 0.73 1.00

org.graphstream.graph.implementations.Edge

getNode0 2 2 2 2.00 1.00 1.00

getSourceNode 2 2 2 2.00 0.85 1.00

getNode1 2 2 2 1.97 1.00 1.00

getTargetNode 2 2 2 2.00 0.80 1.00

changeAttribute 2 2 2 2.00 1.00 1.00

setAttribute 2 2 2 2.00 1.00 1.00

addAttribute 2 2 2 2.00 1.00 1.00

getAttribute 3 3 3 1.57 1.00 1.00

getFirstAttribute 3 3 3 1.80 1.00 1.00

org.graphstream.graph.implementations.SingleNode

changeAttribute 2 2 2 2.00 1.00 1.00

setAttribute 2 2 2 2.00 1.00 1.00

addAttribute 2 2 2 2.00 1.00 1.00

getAttribute 3 3 3 0.63 1.00 1.00

getFirstAttribute 3 3 3 1.50 1.00 1.00

org.graphstream.graph.implementations.MultiNode

changeAttribute 2 2 2 2.00 1.00 1.00

setAttribute 2 2 2 2.00 1.00 1.00

addAttribute 2 2 2 2.00 1.00 1.00

getAttribute 3 3 3 1.20 1.00 1.00

getFirstAttribute 3 3 3 1.80 1.00 1.00

org.graphstream.ui.geom.Vector2

x 1 1 1 0.23 0.50 1.00

y 1 1 1 0.27 1.00 1.00

set 5 5 5 1.37 1.00 1.00

fill 10 10 7 3.87 0.97 1.00

copy 4 4 3 1.23 0.93 1.00

org.graphstream.ui.geom.Vector3

x 1 1 1 0.10 1.00 1.00

y 1 1 1 0.27 0.89 1.00

z 1 1 1 0.20 0.86 1.00

set 5 5 3 0.40 1.00 1.00

fill 10 10 6 0.14 0.10 1.00

copy 4 4 4 2.27 0.99 1.00



Table 3: RQ3: Efficiency of the approach

Case Study Synthesis
Counter
example

Minimum
Timeout

java.util.Stack 18.0s 11.0s 76s

graphstream.Path 20.0s 15.0s 60s

graphstream.Edge 16.0s 6.0s 7s

graphstream.Node 16.0s 6.0s 7s

graphstream.MultiNode 20.0s 8.0s 9s

graphstream.Vector2 15.0s 7.0s 36s

graphstream.Vector3 18.0s 6.0s 29s

We are currently working on improving the evolution process
to make use of any object available in the current method
sequence, instead of arbitrarily choosing one.

In summary, precision and recall are high, almost always
close to or equal to one, indicating that the proposed ap-
proach can retrieve most of the known equivalent sequences
with a low number of false positives. Therefore, we can
answer positively to both RQ1 and RQ2:

RQ1, RQ2: The proposed approach can correctly
identify one and often more than one equivalent method
sequences, with recall and precision which are close or
equal to one in most of the cases.

Table 3 reports the efficiency metrics. Column Synthesis
shows the time required to synthesize an equivalent sequence,
while column Counterexample reports the time for the coun-
terexample generation. Column Minimum Timeout shows
the minimum timeout that can be set to the counterexam-
ple phase without altering the effectiveness of the approach,
that is the precision and recall values reported in Table 2.
Columns Synthesis and Counterexample report the median
of the values computed over the 30 runs across the target
methods of each class (we aggregate performance data by
class to save space; the interested reader can find the de-
tailed data in our replication package). Column Minimum
Timeout reports the worst computation time experienced in
the experiments during the counterexample phase. The table
reports only the counterexample timeout because the syn-
thesis timeout is always lower than the counterexample one,
and thus the counterexample timeout represents an upper
bound for the performance of the approach. The execution
time is acceptable and compatible with the typical usage
scenarios in which redundancy is needed. In fact, even when
equivalent sequences are used at runtime, for example in self-
healing applications, the synthesis of equivalent sequences
can be carried out in advance, offline. Hence, we can answer
positively to research question RQ3:

RQ3: The proposed approach requires a total execu-
tion time that is compatible with the typical appli-
cation scenarios, where redundancy can be identified
offline.

Table 4 reports the data about the effectiveness of the coun-
terexamples: column False Positives indicates the amount of
sequences that were erroneously identified as equivalent and
were not automatically discarded with a counterexample. Col-
umn Discarded indicates the amount of overfitted candidate
solutions that are identified as non-equivalent by a coun-
terexample, and column Efficiency indicates the percentage
of sequences automatically discarded with counterexamples.

Table 4: RQ4: Effectiveness of counterexamples

Class
False

Positives
Discarded Efficiency

java.util.Stack 36 201 84.81%

graphstream.Path 50 22 30.55%

graphstream.Edge 26 87 76.99%

graphstream.Node 0 0 -

graphstream.MultiNode 0 0 -

graphstream.Vector2 13 34 72.34%

graphstream.Vector3 40 36 47.36%

The table indicates that counterexamples are extremely ef-
fective in identifying and removing many method sequences
erroneously proposed as equivalent, from 30% in the worst
case to over 80% in the best case. False positives include
both sequences for which EvoSuite fails to find a counterex-
ample and sequences for which EvoSuite crashes silently due
to a NullPointerException before completing the search. This
last category corresponds to about 30% of the false positives,
and we expect to significantly reduce them by solving the
cause of the exceptions in EvoSuite. We can thus positively
answer research question RQ4:

RQ4: Counterexamples can discard a relevant amount
of method sequences erroneously identified as equiva-
lent to the target one, and can thus reduce significantly
the number of reported false positives.

5.3 Threats to Validity
The main threats that affect the validity of the empirical

study described above are the authors’ bias and the external
validity threats.

Authors’ bias: The authors have manually identified the
reference set of equivalent sequences used to assess the effec-
tiveness of the approach. Such task was carried out before
running SBESto avoid any influence from SBESoutput. More-
over, one author has cross-checked the equivalent sequences
identified by another author to verify that no equivalent
sequence was missed and that the identified equivalent se-
quences were correct.

External validity : We have validated our approach on 7
classes and 47 methods, taken from two real-world subjects.
Different results could be obtained for different systems. We
have chosen two subjects, java.util and Graphstream, that
were known to contain some degree of redundancy in their
implementation. By construction, our approach will not
produce any valuable result on systems that do not include
any redundancy at all.

The selection of the two subjects used in the experiments
was driven exclusively by prior knowledge about the presence
of redundancy. Hence, we expect our approach to behave
similarly on other systems having a comparable degree and
kind of redundancy. On the other hand, specific implemen-
tation details might affect the performance of search-based
generators in finding candidate method sequences or coun-
terexamples. For instance, the use of generic types in class
Stack represented a technological obstacle that required some
tool adaptation. We have tried to choose the subjects used
in the reported experiment so as to maximize their diversity.
The only way to further reduce the external validity threat
consists of replicating our study on more subjects. For this
reason we make our experimental package publicly available
to other researchers.



6. RELATED WORK
The technique proposed in this paper uses a search-based

approach to automatically synthesize method sequences that
are equivalent to a target method. Relevant related work can
be found in the areas of automatic inference of specifications
and search-based techniques to synthesize redundancy.

6.1 Specification Inference
Specification mining finds its roots in the pioneer work of

Ernst et al. who proposed Daikon to infer likely program
invariants from a finite set of executions [12]. Dysy improves
the quality of the invariants by exploiting dynamic symbolic
execution [10]. Similarly, the feedback loop framework pro-
posed by Xie and Notkin refines the likely invariants inferred
with Daikon by feeding them to a test generator, and by
using the newly generated executions to refine the invari-
ants [31]. Our work shares the idea of using a finite set
of executions to infer some information about the program,
but these techniques infer program invariants, while we infer
equivalence among operations.

Other specification mining techniques infer finite state ma-
chine models of software components. Mariani et al. infer
models representing the protocol of components [24]. Pradel
et al. can generate similar models, but target mainly multi-
object protocols [28]. Ghezzi et al. build finite state machines
that model the partial behavior of components, and then
make such models more general via graph transformation
rules [17]. Dallmeier et al., instead, infer finite state ma-
chines representing the objects behavior, and exploit test
case generation to explore unobserved behavior [11]. More
recently, Beschastnikh et al. proposed a framework to spec-
ify model inference algorithms declaratively [3]. Although
finite state machines can express equivalence among different
operations, they typically abstract from the concrete events
observed in the program execution. Consequently, the event
sequence equivalences that can be obtained from the inferred
models hold for the abstract state, but not necessarily for
the complete, concrete one.

The work of Henkel and Diwan is the most closely related
to ours. They use reflection to get the list of methods in a
Java class, and they generate executions to infer algebraic
specifications for such class [20]. The axioms that they gener-
ate to describe the behavior of the class include information
that can be used to infer the equivalence of method sequences.
However, inferring the equivalence of method sequences is
not their primary goal. Differently from them, we focus on
the synthesis of equivalent method sequences, trying to pro-
duce as many different equivalences as possible. This affects
the sequence generation approach: They generate method
invocations randomly, while we employ a search-based tech-
nique to generate only those sequences that are relevant for
synthesizing equivalence. Moreover, our two-phase approach
reduces the number of invalid equivalences, while they have
less chances to invalidate incorrect axioms.

6.2 Search-based Techniques for Redundancy
Search-based techniques have been employed in multiple

domains to solve different problems. Test case generation
is one of such domains, and search-based techniques have
shown their potential in producing test suites that achieve
high coverage according to specific criteria [1, 15, 30].

The work closest to ours is related to search-based tech-
niques to automatically synthesize redundancy. Feldt uses

genetic programming to automatically generate program
variants for fault tolerance techniques like N-version pro-
gramming and recovery blocks [13]. Such variants adhere to
the specification of the original program, but are different
enough to tolerate faults. Similarly, Benoit et al. generate
“sosies”, which are variants generated by adding, removing
and replacing statements in the original program [2]. Sosies
provide the same expected functionality as the original pro-
gram, while exhibiting different executions. Langdon and
Harman produce variants of an original program with differ-
ent non-functional requirements [23].

These techniques generate redundancy in the sense that
they synthesize programs that are slightly different from the
original one, either in their functional or non functional be-
havior. Our technique, instead, aims to identify redundancy
that already exists in the considered components.

7. CONCLUSIONS
Software redundancy that derives from the presence of

equivalent method sequences finds many interesting applica-
tions that span from testing to fault tolerance and self-healing.
The different approaches that exploit equivalent method se-
quences rely on manual identification of the equivalence, and
this limits their applicability and scalability.

In this paper, we propose a novel technique that exploits
search-based algorithms to infer equivalent method sequences.
The approach is fully automatic and applies to any method
sequence. In this paper we report the experimental results
obtained with a prototype that implements the approach to
infer method sequences equivalent to single methods. The
results obtained for 47 methods belonging to two differ-
ent libraries are extremely positive. We can automatically
synthesize more than 87% of the known equivalences that
include many non trivial combinations of method calls with
a negligible number of false positives.

Our prototype implementation uses EvoSuite and inherits
from it some limitations. We are currently working on relax-
ing the limitations imposed by EvoSuite to both widen the
experimental scope and consolidate the validation results.
We are also working on extending the automatic synthesis of
equivalent method sequences beyond single methods to be
able to identify additional equivalent elements in software
systems. Finally, we are studying different applications of
intrinsic redundancy beyond the results obtained so far in
the automatic generation of self-healing systems [5] and test
oracles [4].
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M. Pezzè. Cross-Checking Oracles From Intrinsic
Software Redundancy. In ACM/IEEE International
Conference on Software Engineering (ICSE), 2014.

[5] A. Carzaniga, A. Gorla, A. Mattavelli, N. Perino, and
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