
Supporting Test Suite Evolution through Test Case Adaptation

Mehdi Mirzaaghaei∗, Fabrizio Pastore† and Mauro Pezzè∗ †
∗Faculty of Informatics, University of Lugano, Switzerland

†Department of Informatics Systems and Communications, University of Milano - Bicocca, Milano, Italy
Email: {mehdi.mirzaaghaei,fabrizio.pastore,mauro.pezze}@usi.ch

Abstract—Software systems evolve during development and
maintenance, and many test cases designed for the early
versions of the system become obsolete during the software
lifecycle. Repairing test cases that do not compile due to
changes in the code under test and generating new test cases
to test the changed code is an expensive and time consuming
activity that could benefit from automated approaches.

In this paper we propose an approach for automatically
repairing and generating test cases during software evolution.
Differently from existing approaches to test case generation,
our approach uses information available in existing test cases,
defines a set of heuristics to repair test cases invalidated by
changes in the software, and generate new test cases for evolved
software.

The results obtained with a prototype implementation of
the technique show that the approach can effectively maintain
evolving test suites, and perform well compared to competing
approaches.

Keywords-Software testing, Test case evolution, Test case
maintenance

I. INTRODUCTION

Software systems evolve both during development and

maintenance. Modern processes postulate incremental devel-

opment and testing first, while maintenance activities incre-

mentally modify the software systems usually available with

test cases. Incremental changes in the code may invalidate

some test cases, and developers need to both correct test

cases that are invalidated by the software changes, and add

new ones to test new functionality. We use the term test suite
evolution to indicate the problem of automatically evolving

an original set of test cases by either repairing test cases

invalidated by the changes in the code or generating test

cases to test new functionalities.

Evolving test cases is an expensive and time consuming

activity, and sometime developers discontinue test cases that

may be reused, and do not generate all test cases that may

be needed, due to time pressure [1]. Automated approaches

reduce the pressure on developer, and increase the amount

of test cases reused along the development and maintenance

process.

So far, researchers have looked at the problem of automat-

ing testing activities from different viewpoints. Regression

testing focuses on selecting subsets of test cases to reduce

the amount of test cases to be re-executed [2]. Regression

testing techniques are useful when dealing with large test

suites, but do not address the problem of obsolescence of

test cases that are invalidated by relatively small changes

in the software, like changes that derive from bug fixing,

refactoring and incremental development activities.

Automatic test case generation techniques derive test

cases either from models [3] or code [4], [5]. They tend

to generate test cases that may be both incomplete and dif-

ficult to understand. These techniques often do not identify

the setup actions necessary to execute the test cases, and

generate a large amount of test inputs without distinguishing

between valid and invalid inputs, thus causing invalid fail-

ures. Techniques for mining source code alleviate but do not

eliminate the problem [6]. Most of the existing techniques do

not generate test oracles, thus forcing developers to inspect

the generated test cases to write oracles [7].

Automatic test case repairing techniques are in their

infancy. Modern development frameworks like Eclipse1 can

identify simple syntactic fixes that can be useful, but address

only few elementary problems. Marinov et al. go beyond

simple fixes proposing techniques to correct oracles for

interactive applications [8].

In this paper, we introduce a new approach that reuses

information available in existing test cases to automatically

evolve test suites. In particular, we propose a set of algo-

rithms that can automatically evolve test suites.

We manually inspected different versions of open source

systems, and detected that software developers often reuse

and adapt existing test cases to evolve test suites. We identi-

fied frequent actions for adapting test cases that developers

commonly adopt to correct and generate test cases, and

we relied on the identified actions to define algorithms
for evolving test cases as a solution to support software

developers in the evolution of test cases.

This paper contributes to the state of the art by:

• identifying a set of actions for adapting test cases
commonly adopted by software developers;

• defining TestCareAssistant (TCA), a framework that au-

tomate test suites evolution by implementing different

algorithms for evolving test cases;

• evaluating TCA with state of the art techniques like

Randoop [9], Google CodePro AnalytiX2 (CodePro),

1http://www.eclipse.org
2Google CodePro AnalytiX, http://code.google.com/javadevtools/codepro

2012 IEEE Fifth International Conference on Software Testing, Verification and Validation

978-0-7695-4670-4/12 $26.00 © 2012 IEEE

DOI 10.1109/ICST.2012.35

232

2012 IEEE Fifth International Conference on Software Testing, Verification and Validation

978-0-7695-4670-4/12 $26.00 © 2012 IEEE

DOI 10.1109/ICST.2012.35

231

and EvoSuite [10] when applied to generate test cases

for more than 300 classes under test.

The paper is organized as follows. Section II summarizes

related work. Section III illustrates TCA. Sections IV and

V illustrate in details two of the algorithms, RepairSigna-
tureChanges and TestClassHierarchies, that we implemented

in the TCA prototype. Section VI presents some empirical re-

sults that show the effectiveness and limits of our approach.

Section VII concludes discussing the main results achieved

so far and outlining our current research plans.

II. RELATED WORK

In modern software development and maintenance ap-

proaches, test cases are produced early in the process and

executed many times. Changes in software may invalidate

test cases and require new ones. Regression testing focuses

mainly on selecting subsets of large test suites to reduce

the cost of execution [2]. In this paper we focus of the

problem of evolving test suites that we define as the problem

of correcting test cases that become obsolete during software

evolution and generating new test cases to test new function-

alities. So far, this problem has been approached with either

test case generation or repair techniques.

Test cases are generated automatically either from specifi-

cations or code. Techniques for automatically generating test

cases from specifications, also called model-based testing,

transform models into sets of test cases [3]. These techniques

benefit from model-driven development, but require the

availability of complete models of the system.

Approaches to generate test cases from code rely on

symbolic execution, search techniques or random testing.

Symbolic execution techniques identify the inputs that cover

the feasible elements of a program by solving the path

conditions of the program [4]. Although modern tools that

generate test cases by solving path conditions, like Code-

Pro, find industrial applicability for generating test cases,

symbolic execution works well when conditions involve

simple local variables, but do not scale with the complexity

of the system, when conditions involve dynamically allo-

cated variables and the length of the paths produces big

expressions hard to evaluate. Concolic execution reduces the

constraint solving limitations by combining path constraints

evaluation with random generation of test inputs [11]. Other

approaches like Randoop [9] completely remove limitations

of constraint solving by generating input values randomly.

Search-based testing techniques, like Evosuite [10], generate

test cases by combining search techniques, for example

genetic algorithms, with ad-hoc objective functions that

maximize testing goals, for instance branch coverage.

Automatic test case generation techniques usually do not

identify the setup actions necessary to execute the test cases,

and tend to generate a huge amount of test cases without

distinguishing among valid and invalid inputs thus causing

invalid failures. Furthermore automatically generated test

inputs are often hard to read and maintain, and their practical

applicability is limited to regression testing or detection of

unexpected exception conditions [1].

Only recently, some researchers started investigating test

case generation techniques that produce readable and main-

tainable test cases. Robinson et al. generate maintainable

test cases by extending Randoop with actions derived from

field experience [1], while Mseqgen generates readable test

inputs by mining source code of programs built upon current

program under test [6].

Techniques that automatically repair test cases rely on

models and source code. Memon et al. compare models of

GUI events to capture the differences between two software

versions, and update GUI test cases accordingly [12]. The

technique works well only in the presence of application

models and runtime assertions. Test augmentation techniques

instead do not rely on models but use symbolic execu-

tion [13], concolic execution or genetic algorithms [14]

to derive test inputs that cover paths not executed yet.

These approaches improve automatic test case generation

techniques by taking advantage of the test cases manually

written by developers, but suffer from the same limitations

of classic automatic techniques when generating new test

inputs. Furthermore test augmentation techniques do not

reuse existing information to test new functions or classes,

but fully rely on test case generation approaches.

ReAssert focuses on repairing test oracles, and repairs

oracles broken by changes in the software specifications

by re-executing the failing test cases by means of concrete

or symbolic execution [8]. The suggestions proposed by

ReAssert must be validated by software developers, since

ReAssert modifies test cases to make them pass, and thus

it could erroneously mask failures. ReAssert repairs test

oracles, but does not fix test inputs, thus developers still

need to manually correct the inputs.

Some test cases can also be corrected by means of

automatic refactoring techniques that can prevent simple

errors by automating some of the possible refactoring ac-

tivities like moving or renaming methods. Unfortunately

common refactoring practices like adding new parameters to

methods [15] are only partially automated by existing tools

and techniques. For example, ReBa [16] and Eclipse can fix

compilation errors caused by parameter changes only when

the modified parameters can be replaced by default values.

Other approaches mine source code to repair invalid method

invocations but require that software developers manually

adjust method call arguments [17] or validate the suspicious

method calls identified [18].

III. TEST EVOLUTION ALGORITHMS

In this paper we present TCA, a framework that supports

software developers in test cases maintenance by automating

the activities commonly adopted by software developers

to maintain test cases. We empirically investigated how

233232

developers correct obsolete test cases and reuse existing ones

to generate new test cases on three different open source

systems: JFreeChart3 a graph plotting application, PMD4 a

source code analysis toolset, and JodaTime5 a library for

date time format management. So far, we identified five

test adaptation approaches commonly adopted by software

developers to evolve test suites, and defined corresponding

algorithms that comprise TCA.

TCA requires four inputs from software developers: the

original and the modified version of the program, the test

cases written for the original program and the name of the

test case to repair or the class to generate test cases for. TCA
evolves the test suite by:

1) Analyzing the software changes by diffing the original

and modified version of a software;

2) Adapting the test cases using the appropriate test evo-

lution algorithms.

Finding differences between source code (step 1) is a well

addressed problem, and there is a lot of reliable tool support.

In this section, we focus on the problem of adapting test

cases (step 2), and informally introduce the algorithms for

evolving test cases.

Algorithm 1: Repair Signature Changes. Software devel-

opers often change declaration of method parameters and

return values, and need to repair the compilation errors

induced by the changes. TCA repairs the test cases by

changing the initialization of the variables used in the test

case. It first diffs the original and modified software to

identify the type of the change, for instance, parameter type

change, and determines the type that must be used in the

modified test case to repair the compilation error. TCA then

identifies common paths in the data flow of the modified

parameters, and determines the values used in the original

test cases that can be reused to repair the test case while

preserving the test behavior.

Algorithm 2: Test Class Hierarchies. In object oriented

systems, developers often add software functionalities by

extending class hierarchies. Whenever developers introduce

a new class in a hierarchy, they define new test cases to

verify the functionality of the new class. TCA automatically

generates test cases for the new class by copying and adapt-

ing the test cases for the existing classes of the hierarchy.

TCA identifies similar classes, usually the ancestor and

sibling classes, and reuses the test cases available for those

classes. It first replaces references to the original class under

test with the new class, then resolves compilation errors by

updating references to fields, and finally uses algorithm 1 to

modify the initialization of the variables used in the method

invocations to match the signature of the methods in the

new class. The oracles of the original test cases may not

3http://www.jfreechart.org
4http://pmd.sourceforge.net/
5http://joda-time.sourceforge.net/

work for the modified test cases because the two classes

implement different functionalities. TCA adapts the oracles

of the original test cases by identifying the assertions that

fail, and uses ReAssert to replace the expected values with

the actual values returned by the class under test. This

approach leads to valid oracles only if the implementation is

correct, thus developers should validate the updated oracles.

Verifying updated oracles is cheaper than manually replacing

the values of all the oracles in a test.

Algorithm 3: Test Interface Implementations. The test

cases developed to verify two classes that implement the

same interface usually share a common behavior but may

differ in terms of setup actions and oracles, for example

constructors may require different types of parameters. TCA
generates test cases for a new implementation of a given

interface by copying and adapting the test cases developed

for the classes that implement the same interface. First,

TCA removes compilation errors by redefining the variables

passed as inputs to setup methods with proper input param-

eters. Then TCA identifies failing oracles and updates their

expected values following an approach similar to the one

adopted in Algorithm 2.

Algorithms 4: Test New Overloaded Methods. Overloaded

methods share their name but not the number and type

of their parameters, and usually differ slightly in the im-

plemented functionality. TCA generates test cases for a

new overloaded method by copying and adapting the test

cases developed for other overloaded methods. TCA first

updates the input parameters passed to the method under test

according to the same strategy adopted for Algorithm 1, and

then updates the result expected by the oracle assertions.

Algorithm 5: Test New Overridden Methods. When devel-

opers override a method, they generate a new method with

the same signature of a method defined in a parent class.

Overridden methods share the same interface but differ for

the results they generate. TCA generates the test cases for a

new overridden method by copying the test cases developed

for the method of the parent class and changing the subjects

of the test: It substitutes the instances of the parent class

used in the original test case with instances of the child

class. TCA reduces the developers effort in updating oracles

by automatically updating the expected values of the oracle

assertions to reflect the overridden method implementation.

We implemented TCA as an Eclipse plug-in that currently

implements algorithms 1 and 2. Sections IV and V detail the

two algorithms.

IV. REPAIR SIGNATURE CHANGES

The algorithm RepairSignatureChanges repairs test cases

broken by changes in method signatures. It does not target

the compilation errors that are successfully repaired by the

refactoring tools provided by popular IDEs like method

renaming and changes in the parameter order. The algorithm

also ignores modifications that do not cause compilation

234233

errors, for example the introduction of a return value.

RepairSignatureChanges focuses on four types of changes

in the method signature: changing the type of one or more

parameters, removing one or more parameters, adding one

or more parameters, changing the return type. The empirical

results discussed in Section VI-A, show that these changes

are common and may invalidate a lot of test cases.

Figure 1 shows an example of a change in a method

declaration that breaks some test cases of PMD. During the

development of version 1.1 of PMD, developers modified

the signature of method Report.addRule. The change

caused compilation errors in the 13 test cases that use

the modified method. Figure 2.a shows one of the broken

test cases: the change causes a compilation error in line 3

because the test case uses the variable filename, which

is of type String, as second parameter of the method

Report.addRule, but the method Report.addRule
requires a parameter of type Context in version 1.1 of

PMD.

RepairSignatureChanges can address multiple compila-

tion errors, and copes with each of them iteratively. At

each iteration, it adapts the test cases by (1) analyzing the

change that caused the compilation error, (2) determining

the initialization values that shall be used to repair the

compilation error, and (3) repairing the compilation error.

A. Analyzing the Change

When invoked after a compilation error, RepairSigna-
tureChanges identifies both the changed elements (the mod-

ified parameters or return values), and the type of change.

RepairSignatureChanges identifies the methods that need

to be repaired using the information about the compilation

errors. If a compilation error does not involve a method in-

vocations, RepairSignatureChanges cannot fix the error and

returns. Otherwise, RepairSignatureChanges identifies the

type of the change by diffing the signatures of the modified

methods. In the current prototype, we target Java programs,

and use JDiff6, which returns the set of elementary actions

(parameter additions, removals, type changes, and return

type changes) that correspond to the differences between

the original and the modified methods. When applied to the

PMD example, RepairSignatureChanges determines that the

type of the second input parameter of method addRule has

been changed from String to Context.

�
�
�

����	
����
�����	
����	�������	�
���	
		�����
���	�	
����
		������
��	�		�
��	�

�	���	���

����	
����
�����	
����	�
�����������
		�����
���	�	
����
		������
��	�	���������
��������	�

�
�
�

 �	���	���

Figure 1. A change of method Report.addRule in PMD v 1.1. Developers
changed the type of the second parameter from String to Context.

6http://www.jdiff.org/

����������	�
����������
�
������
�����
���	������
������������������
���
�
������������������ ���!�

�

�����������	�
����������
�
������
�����
����	������
��"�
��#��$�#�	�
���"�
��#�����
���
�
���������������$�#
�
������������������ ���!�

�

����������	�
��
�
��� ������������
��
�
���

%
&
'
(

%
&
'
(
�

Figure 2. a) A test case broken by the change in Figure 1: type mismatch
causes a compilation error in line 3. b) The test case repaired by TCA.

B. Determining the Initialization Values

After identifying the elementary change that caused the

compilation error, RepairSignatureChanges determines first

the program variables that must be initialized, and then the

proper initialization values that preserve the behavior of the

test case. We describe these two steps considering the case

of parameter modification. The algorithms for parameter

additions, removal and return type change are similar. The

interested reader can find additional information in [19].

Determining the proper values to use to initialize the

modified variables is hard, since object parameters can be

complex to initialize, due to the presence of many attributes

whose initialization values may be difficult to determine.

However, not all the elements of an object may need to

be initialized to execute a given test case. RepairSigna-
tureChanges identifies the fields that must be initialized to

execute the test cases and focuses on those only.

To identify the variables to initialize, RepairSigna-
tureChanges starts by locating the first use of the modified

parameter in the new version of the software system by

means of static data flow analysis. If the first use is not

unique, RepairSignatureChanges selects the one occurring

first in the source code. If the modified parameter is an

object, RepairSignatureChanges determines the scope of the

required initialization by checking if the first use involves the

whole object or a subset of its fields. If the first use does not

involve the whole object, RepairSignatureChanges identifies

the object attributes used during the execution of the method,

and locates their first use. RepairSignatureChanges uses

Datec [20] to identify all the uses of the attributes, and

then traverses the interprocedural control flow graph [21]

provided by Soot7, a static analysis framework, starting

from the modified method, to identify the first use of each

attribute. If the modified parameter is either a primitive type

or an object whose fields are not accessed in the first use,

RepairSignatureChanges identifies the parameter itself as the

only variable to initialize.

In the PMD example of Figure 1, RepairSigna-
tureChanges determines that the parameter ctx is used

in line 3 of the method addRule to invoke the

method Context.getFilename. Thus, RepairSigna-
tureChanges needs to determine the values to initialize the

parameter ctx. RepairSignatureChanges locates all the uses

7http://www.sable.mcgill.ca/soot/

235234

of the fields of class Context that are reachable from

the invocation of method addRule. In this example, only

the field filename is accessed within the execution of

method addRule, since it is read by the getter method

getFilename. Thus, RepairSignatureChanges needs to

initialize only the field filename.

RepairSignatureChanges determines the proper initializa-

tion values –the values that preserve the test behavior– by

looking for corresponding values used in the test cases of

the original version of the software system.

To determine the initialization values, RepairSigna-
tureChanges identifies the set of locations that correspond

to uses of the variables to initialize in the modified soft-

ware. RepairSignatureChanges includes into this list also

the variables that are an exact copy of the variables to
initialize. In the PMD example, RepairSignatureChanges
finds two locations, the use of field filename in the

getter method getFilename and the use of the value

returned by method getFilename in line 3 of method

addRule. RepairSignatureChanges then sorts the locations

corresponding to the uses following the order in which Soot
visits them while traversing the interprocedural control flow

graph of the modified method.

For each variable to initialize, RepairSignatureChanges
starts from the first use in the set and looks for a correspond-
ing line in the original software. RepairSignatureChanges
identifies the corresponding line by diffing the original and

the modified source code of the method with JDiff. A line

L0 of the original source code corresponds to a line L1 of

the modified code if L0 is the counterpart of L1, as usually

determined by the Unix diff algorithm, and L0 and L1 differ

at most for: the name of the defined variable, and a literal

or a variable that replaces the variable to initialize in the

original software (we call this the corresponding term). If

the Unix diff identifies multiple counterparts for line L1,

RepairSignatureChanges selects the line most similar to L1
according to the Levenshtein distance [22]. If no corre-

sponding line is found, RepairSignatureChanges proceeds

with the next use, otherwise RepairSignatureChanges finds

a term that corresponds to the use of the variable to initialize
by applying the Needleman–Wunsch [23] global alignment

algorithm on the line in the modified software and its cor-

responding in the original one. If RepairSignatureChanges
does not find any corresponding line for a variable to
initialize, it indicates the initialization value of this element

as unknown. In the PMD example, line 3 of Figure 1.a is the

line that corresponds to the use of ctx.getFilename()
at line 3 in Figure 1.b, and file is the term that corresponds

to field ctx.filename.

We can determine the value of the corresponding term in

the original software either statically or dynamically. We de-

scribed the static approach in a preliminary paper [24]. Here

we describe the dynamic approach that is currently imple-

mented in RepairSignatureChanges, and that overcomes the

limitations of the static one. RepairSignatureChanges imple-

ments the dynamic approach by instrumenting the binaries of

the original software with Soot, and by running the original

version of the test cases to record the dynamic value of each

corresponding term. At this stage RepairSignatureChanges
has identified the variables to initialize and instruments only

the locations corresponding to the uses of these variables.

In the PMD example the execution of the instrumented

version of the software allowed RepairSignatureChanges
to determine that the value to be used to initialize field

filename of class Context is the String ‘‘foo’’.

C. Repairing the Compilation Error

RepairSignatureChanges repairs the test case by first

removing the compilation error and then initializing the test

variables with proper values to preserve the test behavior.

It removes the compilation error by substituting the original

variables with variables of a proper type. In the case of

parameter type change of the PMD example, RepairSigna-
tureChanges behaves like software developers by defining

a new variable of type Context (variable ctx in line 3

of Figure 2.b), and passing it as argument of the method

addRule (line 4 of Figure 2.b).

RepairSignatureChanges then initializes the variables de-

clared in the test cases according to the results of the previ-

ous steps. RepairSignatureChanges initializes the primitive

parameters by simply assigning the values as computed in

the phase determine the initialization values. It initializes the

fields of the introduced objects by invoking the constructor

that initializes most of the fields. As shown in Figure 2.b in

the PMD example, RepairSignatureChanges initializes the

variable ctx by instantiating an object of type Context
using the constructor that initializes the field filename.

When the variable to initialize does not belong to the

set of variables introduced by RepairSignatureChanges, or

when the constructor of a variable introduced by RepairSig-
natureChanges does not initialize all the fields, RepairSigna-
tureChanges invokes the setter methods that initialize these

fields, or uses reflection if setter methods are not available.

When dealing with a return type change, RepairSigna-
tureChanges creates a new variable, assigns the return value

of the modified method to the new variable, and initializes

the variable with the sequence of getters identified in the

phase determine the initialization values.

V. TEST CLASS HIERARCHIES

The algorithm TestClassHierarchies automatically gener-

ates the test cases for new classes added to a hierarchy.

Classes belonging to the same hierarchy share common

interfaces and behaviors, and differ for some of the offered

functionality. Software designers take advantage of these

characteristics when developing test cases that often share

setup actions, for example the objects under tests are built

by passing the same parameters, present same invocation

236235

sequences, and use oracles that inspect the same output

values, but expect different results.

��������������	�
����
�����������������
�������
�����������	
�������������	
���

�������
�������������	����������������� !� !� !�"!�"!�"!�"!��������
������
������������������	�����#��������
��������$����������������'"""!� !� !�"!�"!�"!�"!�	�����������#��������
�

�()

'"
'"*
'"'

���������+���$�������,-�������������
./�
�������,-������
��������01�����������	
������������!����	������������

'"2
'")

��������������3���$��4' 5
����������������6��1����������,-����������������'*"
��������,�������6��1��3� �77������6��1��8� '�
����������������9:�$������;�9�<���������

'*(
'*=

�������������������9��9!��������>���?�����������

'(
'(*

������@@���������������
�����������������������6��1��A�(����'!��������B�������������

''"

Figure 3. A test case for class EthipicChronology.

Figure 3 shows a test case for the class

EthiopicChronology that belongs to JodaTime,

and was added to the hierarchy of class Chronology

in version 1.2 (revision 911). TestClassHierarchies
generated the test case shown in Figure 3 by adapting

the test case testCalendar developed for class

CopticChronology. The test case iterates over all

the days in the range 0 AC - 3000 AC, converts the day

representation from ISO calendar to Ethiopic calendar,

and then checks if the conversion is correct. A valid test

case for class EthiopicChronology must properly

combine different objects and methods. The function

derives a valid month value in the Ethiopic calendar

by retrieving the DateTimeField object that holds

the month value (monthOfYear in line 307) from a

Chronology object configured using an instance of

class EthiopicChronology (epoch in line 301).

The DateTimeField object gives the month in the

Ethiopic Chronology that corresponds to a given timestamp

(the conversion is done by invoking method get, line

320). Proper checks must be added, for example for the

values of months and leap years (lines 324 and 342).

TestClassHierarchies can generate all the elements of a

valid test case, while a test case with random invocations

of methods of class EthiopicChronology would not

be meaningful. TestClassHierarchies can derive a lot of the

domain information required to build good test cases from

existing test cases, while competing techniques cannot. In

the following, we illustrate the three steps that comprise

the TestClassHierarchies approach.

A. Selecting and copying the test cases

TestClassHierarchies automatically identifies the candi-

date test cases by selecting all the test cases of the classes

in the same hierarchy of the new class. All the classes in a

hierarchy might share a common behavior, and thus their test

cases can be used to generate new test cases for the classes

in the hierarchy. TestClassHierarchies copies and renames

the candidate test cases to prevent classpath conflicts.

B. Adapting candidate test cases

For each candidate test case, TestClassHierarchies first

updates all the references to the class under test, and then

solves compatibility issues raised by compilation errors.

In the case of the test for class EthiopicChronology
in Figure 3, TestClassHierarchies updates all the oc-

currences of term CopticChronology with term

EthiopicChronology. To improve readability, Test-
ClassHierarchies updates also all the variable names that

contain portions of the name of the original class under

test with portions of the name of the new class under

test (we partition names according to the Java camel case

convention). In the example of Figure 3, TestClassHierar-
chies replaces COPTHIC_UTC in lines 48 and 307 with

ETHIOPIC_UTC. TestClassHierarchies identifies the class

under test using a simple heuristic based on the standard

naming of JUnit test cases for Java: It removes the prefix/-

suffix “Test” from the name of the candidate test class.

The generated test cases may lead to compilation er-

rors because of undefined fields, constant, constructors, or

methods. In the following paragraphs, we describe how

TestClassHierarchies addresses each incompatibility.

Adapting undefined fields and constants: Test cases

often contain references to constants or fields declared

in the classes under tests. TestClassHierarchies updates

references to constants and fields of the original class

under test by replacing them with references to the cor-

responding constants and fields declared in the class to

test. It identifies corresponding fields and constants by

applying the algorithm to find corresponding terms dis-

cussed in Section IV-B. For example when adapting the

test case in Figure 3, TestClassHierarchies replaces the

references to CopticChronology.AM with references to

EthipicChronology.EE (see line 308), the correspond-

ing constants used to indicate the default era.

%���������	
��
���
����
���
���������������
����
�������
�������	����� ����!���"�������	�
�������#�������$�#�������
���
���������������
���
������������	
��
�������������
��
����������
������������
�������	����� ����!���"�������	�
�������#�������$�#����������������

Figure 4. Example of constructors call adaptation.

Adapting undefined constructors: Constructors of

classes that belong to a same hierarchy may differ in the

number and type of their parameters, although they may

share a subset of their parameters.

Figure 4 shows the excerpt of a test case

for class SVGOutput of Barbecue8 v1.5 that

8Barbecue is a barcode Java library, http://barbecue.sourceforge.net/

237236

TestClassHierarchies generated by adapting the test

cases for class GraphicsOutput. The constructor of

class GraphicsOutput used in the candidate test case

receives as input four objects of type Graphics2D, Font,

Color and Color, in this order. Class SVGOutput does

not provide a constructor that receives the same input types,

thus the candidate test case causes a compilation error.

To repair these errors, TestClassHierarchies replaces the

original constructor calls with the constructor of the class

under test that is most similar to the replaced one. Test-
ClassHierarchies ranks all the constructors of the class

under test on the basis of the parameter types shared with

the constructor of the original class and the number of

parameters with the same name of the sibling constructor.

TestClassHierarchies selects the constructor with the highest

rank.

After finding a similar constructor, TestClassHierarchies
looks for parameters shared by the constructor used in the

original test and the selected constructor. The matching is

done by iteratively looking for parameters of the two con-

structors with the same type or name, with priority to types.

TestClassHierarchies reuses the compatible parameters of

the original test case by suitably positioning them in the

new constructor call.

In the case of mismatching parameters, TestClassHierar-
chies generates input values as follow. If the parameter is

primitive TestClassHierarchies uses default values: “0” for

numeric types and bytes, the space character for the char
type, the empty string for type String, and an array with a

default element for type array. If the required parameter is

an object, TestClassHierarchies uses either constants of that

type or factory methods that return an object of that type. If

none is found, TestClassHierarchies invokes a constructor

of the required type9. If the constructor requires object

parameters, TestClassHierarchies simply creates stubs. Our

Java implementation uses Easymock10. Figure 4.b shows

how TestClassHierarchies creates the first parameter of

SVGOutput constructor, which is of type Writer: It in-

vokes the constructor of class JavadocEscapeWriter11,

with a stub created using Easymock.

��������	
����	�	
��	��������������	��	��	���	��	��	��	�������
��������	�
��	�	
��	��������������	��	��	���	��	��	��	�������
�

����� �!
�"�	��#$
�
%&���
'�����
�
�����	�
���%(��)���
����

��������	
����	�	
��	��������������	��	��	���	��	��	��	�������
��������	�
��	�	
��	��������������	��	��	���	��	��	��	�������
�

����� �!
�"�	��#$
�
%����������	����
�����	�
���%
�������������

Figure 5. Example of repair of method invocations. TestClassHier-
archies repairs the compilation error caused by the invocation of
method yearsBetween by invoking the corresponding method,
secondsBetween.

9In the case of interfaces, it randomly picks up a constructor that
implements the interface

10http://easymock.org/
11Class JavadocEscapeWriter implements interface Writer

Adapt undefined method: Figure 5 shows a test

case for class Seconds that TestClassHierarchies gen-

erated by reusing the test case for class Years. The

test case causes a compilation error because method

yearsBetween(DateTime,DateTime) is not de-

clared in the new class under test.
When TestClassHierarchies identifies a call to a non ex-

isting method, looks for a similar method in the class under

test. TestClassHierarchies finds the most similar method

considering the signatures of all the methods declared in

the class under test, and applies an extended version of

the algorithm that identifies similar constructors: The al-

gorithm first sorts the methods according to the similarity

of their names by calculating their Levenshtein distance,

and then according to the number of common parameter

types and names. After identifying the most similar method,

TestClassHierarchies replaces the invocation of the original

method with the new one following the same steps adopted

in the case of constructors: It adds corresponding parameters,

and then looks for new parameters. If TestClassHierarchies
does not find any similar method it removes the call to the

undeclared method.

C. Repairing runtime errors
After repairing compilation errors, TestClassHierarchies

executes the test cases (TestClassHierarchies discards the

test cases that were not successfully repaired). The execution

of the test cases might lead to pass, fail, or exception.
Test case failures may depend on the fact that oracles

do not reflect the specifications of the class under test.

TestClassHierarchies repairs the failing assertions with Re-

Assert [25]. ReAssert automatically updates JUnit assertions

by replacing the expected value with a new value that is

equal to the one returned by the method under test, and thus

makes the test case pass. Identifying and fixing wrong oracle

values is easier than writing new oracles, and we expect that

software developers can easily check the oracles.
Test cases that throw an exception are a special case of

failing test cases. Exceptions may either indicate an error

in the implementation of the class, wrong test inputs, or an

invalid test case setup. When the test case execution raises

an exception, we rely on the developers to determine if the

test cases should be removed or kept because they pinpoint

a fault.
TestClassHierarchies generates test cases by reusing test

cases written for different classes, and thus multiple test

cases might cover the same software behavior. To prune

duplicate test cases, TestClassHierarchies adopts a simple

heuristic that consists of executing the test cases and mea-

suring the instructions covered during execution12. Test-
ClassHierarchies discards the test cases that do not increase

the instructions coverage, i.e. that do not cover instructions

not already covered.

12The current prototype uses EclEmma, www.eclemma.org

238237

Subject # avg. LOC Not-Compile TCA %
Cassandra 19 62,631 197,047 36,881 18.72
Geronimo 4 208,216 30,057 16,222 53.97
POI 6 236,614 47,502 16,723 35.20
Santuario 4 11,185 8,532 590 6.92
Shindig 6 96,813 3,708 2,570 69.31
Velocity 15 45,576 1,442 676 46.88
Wicket 7 203,183 6,930 6,246 90.13
Xindice 9 55,821 13,072 5,444 41.65
XMLBeans 7 159,835 3,922 1,986 50.64

Table I
CHANGES IN APACHE PROJECTS

VI. EXPERIMENTS

We evaluated the applicability and effectiveness of TCA
on some open source projects. The current prototype allows

us to experiment with the two algorithms described in the

former sections, RepairSignatureChanges for repairing test

cases to cope with signature changes, and TestClassHierar-
chies for generating new test cases for classes that extend

class hierarchies. For both algorithms, we evaluated the

ability of TCA to reduce the effort on test case maintenance,

and its effectiveness in adapting the test suite. We report the

results for the two algorithms in the following subsections.

A. Repairing signature changes

Applicability: To evaluate the applicability of RepairSig-
natureChanges we investigated how often RepairSigna-
tureChanges can address changes that cause compilation

errors in test cases. We analyzed 80 versions of different

open source projects of the Apache Software Foundation13.

We choose software projects with several versions properly

tagged on the versioning repository. Table I reports the

projects that we analyzed in column Subject, the number of

versions that we considered in our study in column #, and

the average size (lines of code) of each in column avg. LOC.

We used JDiff to identify the changes between two

consecutive releases of each project, and counted the number

of changes that can lead to compilation errors in test cases.

Column Not-Compile of Table I shows the total amount of

changes that may lead to compilation errors in test cases

for each project14. Column TCA indicates the number of

changes to which RepairSignatureChanges can be applied to

repair the compilation errors. RepairSignatureChanges can

handle a total of 87,338 changes: 33,586 added parameters,

18,704 removed parameters, 8,430 parameter type changes
and 26,618 return type changes.

On average, for each project, TCA can repair the com-

pilation errors for the 45% of the changes that lead to

compilation errors. Outliers, i.e., Santuario and Wicket, show

that different projects may present a different number of

13Apache Software Foundation, www.apache.org
14We do not report the test cases that raise compilation errors because

test cases are not available for all the changed methods.

changes in parameter declarations. In 6 of the 9 projects

that we considered, more than 40% of the changes that lead

to compilation errors are changes in parameter declarations,

thus highlighting the usefulness of TCA.

Effectiveness: We applied TCA to repair 138 test cases of

three different software: JFreeChart, PMD and JodaTime.

We considered 6 releases and 21 test cases for JFreeChart,

2 releases and 18 test cases for JodaTime, 13 releases

and 99 test cases for PMD. For each release, we executed

TCA on all test cases that do not compile. The test cases

considered in our study were broken by different type of

changes: parameter type changes (26), parameter additions

(68), parameter removals (23), and return type changes (21).

Change TC Errors Valid Same as
fixed test cases Developers’

Par. Type 26 26 22 (84.62%) 14 (53.85%)
Par. Add 68 68 68 (100.00%) 59 (86.76%)
Par. Remove 23 23 17 (73.91%) 21 (91.03%)
Ret. Type 21 21 21 (100.00%) 11 (52.38%)
Total 138 138 128 (92.75%) 105 (76.08%)

Table II
EFFECTIVENESS ON GENERATING REPAIRS

To measure the effectiveness of RepairSignatureChanges,

we compiled and ran the test cases repaired by TCA, and

checked how many test cases compile and execute correctly,

i.e., do not fail after repair. We also manually compared the

test cases repaired by RepairSignatureChanges with the ones

repaired by software developers to check if they present the

same behavior. Table II shows that all test cases repaired by

RepairSignatureChanges compile correctly (column Errors-
fixed), and that 128 test cases (92.75%) also execute cor-

rectly (column Valid-test-cases). Only 10 of the repaired

test cases do not execute. Their non-executability depends

on the default values generated by RepairSignatureChanges
that alter the test behavior, thus causing failures in assertions

(4 cases), or runtime exceptions due to the absence of proper

initialization of other variables (6 cases). Of the 128 repaired

test cases, 105 present the same behavior as the test cases

generated by software developers, while the others present

a different but valid behavior. All the test cases repaired by

RepairSignatureChanges cover valid behaviors that integrate

the ones covered by the test cases repaired by software

developers.

B. Generating test cases for new classes

Applicability: To evaluate the applicability of Test-
ClassHierarchies for generating test cases, we analyzed the

source code of 5 open source projects. Table III shows

the results. Column Subject indicates the software version

that we investigated, Column LOC indicates the size (lines

of code) of that version, Column Classes indicates the

total amount of classes in that version, Column Hierarchy

239238

indicates the number and percentage of classes that extend a

class hierarchy, i.e., classes for which TestClassHierarchies
can generate test cases.

TestClassHierarchies can generate test cases for 60% of

the classes of each project, on average. These results repre-

sent an upper bound to the applicability of the approach, in

fact the applicability of TestClassHierarchies depends not

only on the presence of class hierarchies but also on the

availability of test cases for classes of a same hierarchy.

For example, in JodaTime 1.62, TestClassHierarchies could

generate test cases for 74% of the classes, but JodaTime

does not have test cases for all the implemented classes, thus

TestClassHierarchies can automatically test 32% of classes.

Subject LOC Classes Hierarchy
Barbecue 1.5 8,842 55 28 (50.91%)
JFreeChart 1.013 217,357 471 275 (58.39%)
JodaTime 1.62 63,922 99 74 (74.75%)
PMD 4.2 65,279 483 315 (65.22%)
Xstream 1.31 24,655 218 120 (55.05%)

Table III
APPLICABILITY ON TEST GENERATION FOR CLASS HIERARCHIES

Effectiveness: We evaluated the effectiveness of Test-
ClassHierarchies by generating test cases for all the classes

that belong to a class hierarchy in the five open source

systems. For each class considered in the experiment, we

removed the test cases implemented by developers for that

class, and applied TestClassHierarchies to generate new test

cases. We compared the test cases generated with Test-
ClassHierarchies with the test cases generated by develop-

ers, and the test cases generated by three test case generation

techniques implemented by tools available online: Randoop

version 1.3.2, CodePro version 7.1.0, and EvoSuite version

20110929. Table IV shows the results. Column C indicates

the number of classes for which we generate the test cases.

The other columns indicate the instruction coverage for the

class under test obtained with the test cases generated with

the different approaches.

The test cases produced by developers achieve the highest

coverage, but at a price of a high effort. TCA performs

as well as EvoSuite, and outperforms both CodePro and

Randoop. To characterize the differences between TCA and

EvoSuite, we compared the set of statements covered by

Subjects C TcA Devs Rand CodePro EvoS
Barbecue 1.5 12 73.42 63.44 45.80 23.10 82.03
Jfrechart 1.013 204 47.92 49.22 27.70 52.06 51.46
JodaTime 1.62 32 75.28 88.07 48.97 77.33 71.52
PMD 4.2 56 47.18 65.53 40.56 49.68 60.03
Xstream 1.31 36 58.55 78.19 18.67 54.18 43.35
Total 340 60.47 68.89 36.34 51.27 61.68

Table IV
EFFECTIVENESS OF TEST CASE GENERATION FOR CLASS HIERARCHIES

tests cases generated by developers, TCA, and EvoSuite for

each class under test. The test cases generated by TCA and

Evosuite cover a common set of 12055 lines of code (49%

of the total). TCA and EvoSuite are complementary: TCA
covers 6370 lines (25.9%) not covered by Evosuite, while

Evosuite covers 6208 lines not covered by TCA (25.2%).

TCA outperforms Evosuite in 130 test cases, Evosuite out-

performs TCA in 134. Evosuite works better than TCA when

path conditions cannot be covered by copying data used in

ancestor test cases, while TCA produces test cases that check

the software behavior in presence of runtime errors that can

be covered only with some domain knowledge that TCA
implicitly imports from existing test cases.

The test cases produced by developers often stress both

the code of the class under test and the code of parent

classes, to identify integration faults between parent and

child classes. Table IV shows the coverage for the class

under test only, but we manually inspected the generated

test cases and found that by reusing existing test cases,

TCA generates test cases that check both the class under

test and its integration with parents. Evosuite generate test

cases for single classes and produces good test cases for the

class, but ignores the integration with the parent class. For

example, for the class EthiopicChronology, TCA covers 1083

instructions belonging to class EthiopicChronology or one of

its parents, while Evosuite covers only 683 instructions.

By modifying developers test cases, TCA generates test

cases that are more readable than the ones produced by

Evosuite. TCA test cases are as readable and maintainable

as the original tests written by developers. Figure 3 shows a

test case generated by TCA that although covering a complex

behavior is easy to understand thanks to the presence of

meaningful names. Figure 6 shows a test case generated

by Evosuite that uses abstract names that make test cases

difficult to understand and maintain.

����������	�
����
���	��������������	�
����
�����
���
��������
����	�����������	���
��������!���"���	#������������!���"���	��$��%
��	&'��
��	
���
��
����	(�����	#��"")	��!���"�*+�,-.�/00,,��
����	��1�������	(.�#�2#2/0033#34-��

Figure 6. A test case for class EthipicChronology by Evosuite.

VII. CONCLUSIONS

In this paper we introduce the problem of test case

evolution that we define as the problem of repairing existing

test cases and generating new ones to react to incremental

changes in software systems. We identify frequent actions

for adapting test cases that developers commonly adopt to

repair and generate test cases, and we define five algorithms

for evolving test cases as a solution to support software

developers. We describe a prototype implementation that we

used to validate the approach.

The experimental results presented in the paper show

that the approach can repair and generate many test cases,

240239

thus reducing the testing effort. TCA properly repairs 90%

of the compilation errors it addresses, and generates test

cases that cover the same amount of instructions of state

of the art techniques. The test cases produced by TCA are

complementary to the ones generated by other techniques,

which indicates that TCA could be integrated with other

approaches to improve testing results.

We experimented the approach with two of the five

algorithms. We are extending the prototype to experiment

with the complete set of algorithms. We are also mining

software repositories to identify other recurrent actions and

enrich the set of algorithms.

REFERENCES

[1] B. Robinson, M. D. Ernst, J. H. Perkins, V. Augustine, and
N. Li, “Scaling up automated test generation: Automatically
generating maintainable regression unit tests for programs,”
in Automated Software Engineering, 2011, pp. 23 –32.

[2] M. Harrold and A. Orso, “Retesting software during develop-
ment and maintenance,” Frontiers of Software Maintenance,
pp. 99–108, 2008.

[3] A. Pretschner, “Model-based testing,” in International Con-
ference on Software Engineering, 2005, pp. 722–723.

[4] C. S. Pǎsǎreanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-
Burlet, M. Lowry, S. Person, and M. Pape, “Combining unit-
level symbolic execution and system-level concrete execution
for testing NASA software,” in International Symposium on
Software Testing and Analysis, 2008, pp. 15–26.

[5] C. Pacheco and M. D. Ernst, “Randoop: feedback-directed
random testing for Java,” in Companion of Conference
on Object-Oriented Programming Systems and Applications,
2007, pp. 815–816.

[6] S. Thummalapenta, T. Xie, N. Tillmann, J. de Halleux, and
W. Schulte, “MSeqGen: object-oriented unit-test generation
via mining source code,” in Symposium on Foundations of
Software Engineering, 2009, pp. 193–202.

[7] V. Jagannath, Y. Y. Lee, B. Daniel, and D. Marinov, “Reduc-
ing the costs of bounded-exhaustive testing,” in International
Conference on Fundamental Approaches to Software Engi-
neering, 2009, pp. 171–185.

[8] B. Daniel, T. Gvero, and D. Marinov, “On test repair using
symbolic execution,” in International Symposium on Software
Testing and Analysis, 2010, pp. 207–218.

[9] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-
directed random test generation,” in International Conference
on Software Engineering, 2007, pp. 75–84.

[10] G. Fraser and A. Arcuri, “EvoSuite: Automatic test suite
generation for object-oriented software,” in Symposium on the
Foundations of Software Engineering, 2011, pp. 416–419.

[11] K. Sen, D. Marinov, and G. Agha, “CUTE: a concolic unit
testing engine for C,” SIGSOFT Software Engineering Notes,
vol. 30, no. 5, pp. 263–272, 2005.

[12] A. M. Memon, “Automatically repairing event sequence-
based GUI test suites for regression testing,” ACM Transac-
tions Software Engineering Methodology, vol. 18, no. 2, pp.
1–36, 2008.

[13] S. Person, M. B. Dwyer, S. Elbaum, and C. S. Pǎsǎreanu,
“Differential symbolic execution,” in Proceedings of the 16th
Int. Symp. on Foundations of Software Engineering. ACM,
2008, pp. 226–237.

[14] Z. Xu, Y. Kim, M. Kim, G. Rothermel, and M. B. Cohen,
“Directed test suite augmentation: techniques and tradeoffs,”
in Proceedings of the 18th Int. Symp. on Foundations of
Software Engineering. ACM, 2010, pp. 257–266.

[15] Z. Xing and E. Stroulia, “Refactoring practice: How it is
and how it should be supported an eclipse case study,” in
ICSM 2006: Proceedings of IEEE International Conference
on Software Maintenance, 2006, pp. 458–468.

[16] D. Dig, S. Negara, V. Mohindra, and R. Johnson, “ReBA:
refactoring-aware binary adaptation of evolving libraries,” in
International Conference on Software Engineering, 2008, pp.
441–450.

[17] B. Dagenais and M. P. Robillard, “Recommending adaptive
changes for framework evolution,” in Proceedings of the 30th
international conference on Software engineering, ser. ICSE
’08. ACM, 2008, pp. 481–490.

[18] T. Schäfer, J. Jonas, and M. Mezini, “Mining framework
usage changes from instantiation code,” in Proceedings of
the 30th international conference on Software engineering,
ser. ICSE ’08. ACM, 2008, pp. 471–480.

[19] M. Mirzaaghaei, F. Pastore, and M. Pezzé, “Algorithms for
repairing test suites through parameters adaptation,” Univer-
sity of Lugano, Tech. Rep., 2011. [Online]. Available: http:
//www.inf.usi.ch/phd/mirzaaghaei/TestrepairTR-2011.pdf

[20] G. Denaro, A. Gorla, and M. Pezzè, “DaTeC: Contextual data
flow testing of Java classes,” in Companion of International
Conference on Software Engineering, 2009, pp. 421–422.

[21] M. J. Harrold, G. Rothermel, and S. Sinha, “Computation of
interprocedural control dependence,” in International Sympo-
sium on Software Testing and Analysis, 1998, pp. 11–20.

[22] V. Levenshtein, “Binary codes capable of correcting spurious
insertions and deletions of ones.” Probl. Inf. Transmission,
vol. 1, pp. 8–17, 1965.

[23] S. Needleman and C. Wunsch, “A general method applicable
to the search for similarities in the amino acid sequence of
two proteins,” Journal of Molecular Biology, vol. 48, no. 3,
pp. 443 – 453, 1970.

[24] M. Mirzaaghaei, F. Pastore, and M. Pezzè, “Automatically
repairing test cases for evolving method declarations,” in
International Conference on Software Maintenance, 2010, pp.
1–5.

[25] B. Daniel, V. Jagannath, D. Dig, and D. Marinov, “Reassert:
Suggesting repairs for broken unit tests,” in International
Conference on Automated software engineering, 2009, pp.
433–444.

241240

